These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 28948427)

  • 1. Effect of iron reduction by enolic hydroxyl groups on the stability of scorodite in hydrometallurgical industries and arsenic mobilization.
    Yuan Z; Wang S; Ma X; Wang X; Zhang G; Jia Y; Zheng W
    Environ Sci Pollut Res Int; 2017 Dec; 24(34):26534-26544. PubMed ID: 28948427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The stability of Fe(III)-As(V) co-precipitate in the presence of ascorbic acid: Effect of pH and Fe/As molar ratio.
    Yuan Z; Zhang G; Lin J; Zeng X; Ma X; Wang X; Wang S; Jia Y
    Chemosphere; 2019 Mar; 218():670-679. PubMed ID: 30504042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Fe(II)-induced transformation of scorodite on arsenic solubility.
    Zhou J; Liu Y; Bu H; Liu P; Sun J; Wu F; Hua J; Liu C
    J Hazard Mater; 2022 May; 429():128274. PubMed ID: 35066222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scorodite dissolution kinetics: implications for arsenic release.
    Harvey MC; Schreiber ME; Rimstidt JD; Griffith MM
    Environ Sci Technol; 2006 Nov; 40(21):6709-14. PubMed ID: 17144300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biogenic scorodite crystallization by Acidianus sulfidivorans for arsenic removal.
    Gonzalez-Contreras P; Weijma J; van der Weijden R; Buisman CJ
    Environ Sci Technol; 2010 Jan; 44(2):675-80. PubMed ID: 20017476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability of continuously produced Fe(II)/Fe(III)/As(V) co-precipitates under periodic exposure to reducing agents.
    Doerfelt C; Feldmann T; Daenzer R; Demopoulos GP
    Chemosphere; 2015 Nov; 138():239-46. PubMed ID: 26086809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partitioning and transformation behavior of arsenic during Fe(III)-As(III)-As(V)-SO
    Ma X; Zhang J; Gomez MA; Ding Y; Yao S; Lv H; Wang X; Wang S; Jia Y
    Sci Total Environ; 2021 Dec; 799():149474. PubMed ID: 34426338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilizing arsenic-enriched wastewater from utilization of crude antimony oxides as scorodite using a novel multivalent iron source.
    Tang Z; Tang X; Liu H; Xiao Z
    Chemosphere; 2023 Oct; 339():139751. PubMed ID: 37557998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term stability of the Fe(III)-As(V) coprecipitates: Effects of neutralization mode and the addition of Fe(II) on arsenic retention.
    Zhang D; Wang S; Gomez MA; Wang Y; Jia Y
    Chemosphere; 2019 Dec; 237():124503. PubMed ID: 31398610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiosulfate driving bio-reduction mechanisms of scorodite in groundwater environment.
    Yang Y; Xie Z; Wang J; Chen M
    Chemosphere; 2023 Jan; 311(Pt 1):136956. PubMed ID: 36280119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissolution and final fate of arsenic associated with gypsum, calcite, and ferrihydrite: Influence of microbial reduction of As(V), sulfate, and Fe(III).
    Rios-Valenciana EE; Briones-Gallardo R; Chazaro-Ruiz LF; Lopez-Lozano NE; Sierra-Alvarez R; Celis LB
    Chemosphere; 2020 Jan; 239():124823. PubMed ID: 31726520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic release from microbial reduction of scorodite in the presence of electron shuttle in flooded soil.
    Fang Y; Chen M; Liu C; Dong L; Zhou J; Yi X; Ji D; Qiao J; Tong H
    J Environ Sci (China); 2023 Apr; 126():113-122. PubMed ID: 36503741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous bioscorodite crystallization in CSTRs for arsenic removal and disposal.
    González-Contreras P; Weijma J; Buisman CJ
    Water Res; 2012 Nov; 46(18):5883-92. PubMed ID: 22960037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic(V) Incorporation in Vivianite during Microbial Reduction of Arsenic(V)-Bearing Biogenic Fe(III) (Oxyhydr)oxides.
    Muehe EM; Morin G; Scheer L; Pape PL; Esteve I; Daus B; Kappler A
    Environ Sci Technol; 2016 Mar; 50(5):2281-91. PubMed ID: 26828118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic release from arsenopyrite weathering: insights from sequential extraction and microscopic studies.
    Basu A; Schreiber ME
    J Hazard Mater; 2013 Nov; 262():896-904. PubMed ID: 23312782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hematite-catalysed scorodite formation as a novel arsenic immobilisation strategy under ambient conditions.
    Tabelin CB; Corpuz RD; Igarashi T; Villacorte-Tabelin M; Ito M; Hiroyoshi N
    Chemosphere; 2019 Oct; 233():946-953. PubMed ID: 31340422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial mobilization of arsenic from iron-bearing clay mineral through iron, arsenate, and simultaneous iron-arsenate reduction pathways.
    Zhao Z; Meng Y; Yuan Q; Wang Y; Lin L; Liu W; Luan F
    Sci Total Environ; 2021 Apr; 763():144613. PubMed ID: 33383508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red mud regulates arsenic fate at acidic pH via regulating arsenopyrite bio-oxidation and S, Fe, Al, Si speciation transformation.
    Zhang DR; Chen HR; Xia JL; Nie ZY; Zhang RY; Schippers A; Shu WS; Qian LX
    Water Res; 2021 Sep; 203():117539. PubMed ID: 34407485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T
    Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism and thermodynamics of scorodite formation by oxidative precipitation from arsenic-bearing solution.
    Tang Z; Tang X; Xiao Z; Liu H
    Environ Res; 2024 Jun; 250():118500. PubMed ID: 38387492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.