These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Second generation, arginine-rich (R-X'-R)(4)-type cell-penetrating α-ω-α-peptides with constrained, chiral ω-amino acids (X') for enhanced cargo delivery into cells. Patil KM; Naik RJ; Vij M; Yadav AK; Kumar VA; Ganguli M; Fernandes M Bioorg Med Chem Lett; 2014 Sep; 24(17):4198-202. PubMed ID: 25096299 [TBL] [Abstract][Full Text] [Related]
3. Cell penetrating peptides from agglutinin protein of Abrus precatorius facilitate the uptake of Imatinib mesylate. Behera B; Mukherjee D; Agarwal T; Das J; Ghosh SK; Maiti TK Colloids Surf B Biointerfaces; 2016 Apr; 140():169-175. PubMed ID: 26752214 [TBL] [Abstract][Full Text] [Related]
4. Antimicrobial and cell-penetrating properties of penetratin analogs: effect of sequence and secondary structure. Bahnsen JS; Franzyk H; Sandberg-Schaal A; Nielsen HM Biochim Biophys Acta; 2013 Feb; 1828(2):223-32. PubMed ID: 23085001 [TBL] [Abstract][Full Text] [Related]
5. Identification and characterization of novel protein-derived arginine-rich cell-penetrating peptides. Gautam A; Sharma M; Vir P; Chaudhary K; Kapoor P; Kumar R; Nath SK; Raghava GP Eur J Pharm Biopharm; 2015 Jan; 89():93-106. PubMed ID: 25459448 [TBL] [Abstract][Full Text] [Related]
6. Stability of cell-penetrating peptide-morpholino oligomer conjugates in human serum and in cells. Youngblood DS; Hatlevig SA; Hassinger JN; Iversen PL; Moulton HM Bioconjug Chem; 2007; 18(1):50-60. PubMed ID: 17226957 [TBL] [Abstract][Full Text] [Related]
7. Cell-penetrating peptides as transporters for morpholino oligomers: effects of amino acid composition on intracellular delivery and cytotoxicity. Wu RP; Youngblood DS; Hassinger JN; Lovejoy CE; Nelson MH; Iversen PL; Moulton HM Nucleic Acids Res; 2007; 35(15):5182-91. PubMed ID: 17670797 [TBL] [Abstract][Full Text] [Related]
8. Highly efficient (R-X-R)-type carbamates as molecular transporters for cellular delivery. Patil KM; Naik RJ; Rajpal ; Fernandes M; Ganguli M; Kumar VA J Am Chem Soc; 2012 May; 134(17):7196-9. PubMed ID: 22509923 [TBL] [Abstract][Full Text] [Related]
9. Hydrophobic and electrostatic interactions between cell penetrating peptides and plasmid DNA are important for stable non-covalent complexation and intracellular delivery. Upadhya A; Sangave PC J Pept Sci; 2016 Oct; 22(10):647-659. PubMed ID: 27723187 [TBL] [Abstract][Full Text] [Related]
10. Design, synthesis and characterization of a new anionic cell-penetrating peptide: SAP(E). Martín I; Teixidó M; Giralt E Chembiochem; 2011 Apr; 12(6):896-903. PubMed ID: 21365733 [TBL] [Abstract][Full Text] [Related]
11. Enhanced and Prolonged Cell-Penetrating Abilities of Arginine-Rich Peptides by Introducing Cyclic α,α-Disubstituted α-Amino Acids with Stapling. Oba M; Kunitake M; Kato T; Ueda A; Tanaka M Bioconjug Chem; 2017 Jul; 28(7):1801-1806. PubMed ID: 28603971 [TBL] [Abstract][Full Text] [Related]
12. Discovery of a non-cationic cell penetrating peptide derived from membrane-interacting human proteins and its potential as a protein delivery carrier. Young Kim H; Young Yum S; Jang G; Ahn DR Sci Rep; 2015 Jun; 5():11719. PubMed ID: 26114640 [TBL] [Abstract][Full Text] [Related]
13. Novel cell-penetrating peptides based on α-aminoxy acids. Ma Y; Yang D; Ma Y; Zhang YH Chembiochem; 2012 Jan; 13(1):73-9. PubMed ID: 22162305 [TBL] [Abstract][Full Text] [Related]
14. The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides. Jobin ML; Blanchet M; Henry S; Chaignepain S; Manigand C; Castano S; Lecomte S; Burlina F; Sagan S; Alves ID Biochim Biophys Acta; 2015 Feb; 1848(2):593-602. PubMed ID: 25445669 [TBL] [Abstract][Full Text] [Related]
15. Macrocyclic cell penetrating peptides: a study of structure-penetration properties. Traboulsi H; Larkin H; Bonin MA; Volkov L; Lavoie CL; Marsault É Bioconjug Chem; 2015 Mar; 26(3):405-11. PubMed ID: 25654426 [TBL] [Abstract][Full Text] [Related]
16. Effect of Preorganized Charge-Display on the Cell-Penetrating Properties of Cationic Peptides. Nagel YA; Raschle PS; Wennemers H Angew Chem Int Ed Engl; 2017 Jan; 56(1):122-126. PubMed ID: 27900805 [TBL] [Abstract][Full Text] [Related]
17. Oligonucleotide delivery with cell surface binding and cell penetrating Peptide amphiphile nanospheres. Mumcuoglu D; Sardan M; Tekinay T; Guler MO; Tekinay AB Mol Pharm; 2015 May; 12(5):1584-91. PubMed ID: 25828697 [TBL] [Abstract][Full Text] [Related]
18. Enhancing the Cell Permeability and Metabolic Stability of Peptidyl Drugs by Reversible Bicyclization. Qian Z; Rhodes CA; McCroskey LC; Wen J; Appiah-Kubi G; Wang DJ; Guttridge DC; Pei D Angew Chem Int Ed Engl; 2017 Feb; 56(6):1525-1529. PubMed ID: 28035784 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of six-membered carbocyclic ring α,α-disubstituted amino acids and arginine-rich peptides to investigate the effect of ring size on the properties of the peptide. Kato T; Kita Y; Iwanari K; Asano A; Oba M; Tanaka M; Doi M Bioorg Med Chem; 2021 May; 38():116111. PubMed ID: 33838611 [TBL] [Abstract][Full Text] [Related]
20. Interaction of amphiphilic α-helical cell-penetrating peptides with heparan sulfate. Yang J; Tsutsumi H; Furuta T; Sakurai M; Mihara H Org Biomol Chem; 2014 Jul; 12(26):4673-81. PubMed ID: 24867193 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]