BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 28948726)

  • 1. [Progress in catechins oxidation products and their formation mechanism].
    Ding YP; Lu CQ; Hou HX; Cen YJ; Tong HR
    Zhongguo Zhong Yao Za Zhi; 2017 Jan; 42(2):239-253. PubMed ID: 28948726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gut Microbiota as a Novel Tool to Dissect the Complex Structures of Black Tea Polymers.
    Wang W; Ohland C; Jobin C; Sang S
    J Agric Food Chem; 2022 Apr; 70(16):5005-5014. PubMed ID: 35420414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Analysis of Major Phytochemicals in Orthodox tea (Camellia sinensis), Oxidized under Compressed Air Environment.
    Panda BK; Datta AK
    J Food Sci; 2016 Apr; 81(4):C858-66. PubMed ID: 26970442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production Mechanisms of Black Tea Polyphenols.
    Tanaka T; Matsuo Y
    Chem Pharm Bull (Tokyo); 2020; 68(12):1131-1142. PubMed ID: 33268645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study into the chemical changes of tea leaf polyphenols during japanese black tea processing.
    Ito A; Yanase E
    Food Res Int; 2022 Oct; 160():111731. PubMed ID: 36076419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model system-based mechanistic studies of black tea thearubigin formation.
    Yassin GH; Koek JH; Kuhnert N
    Food Chem; 2015 Aug; 180():272-279. PubMed ID: 25766828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fungal laccase-catalyzed oxidation of EGCG and the characterization of its products.
    Lee Y; Lin Z; Du G; Deng Z; Yang H; Bai W
    J Sci Food Agric; 2015 Oct; 95(13):2686-92. PubMed ID: 25407933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oligomerization Mechanisms of Tea Catechins Involved in the Production of Black Tea Thearubigins.
    Hashiguchi K; Teramoto S; Katayama K; Matsuo Y; Saito Y; Tanaka T
    J Agric Food Chem; 2023 Oct; 71(41):15319-15330. PubMed ID: 37812808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New dibenzotropolone derivatives characterized from black tea using LC/MS/MS.
    Sang S; Tian S; Stark RE; Yang CS; Ho CT
    Bioorg Med Chem; 2004 Jun; 12(11):3009-17. PubMed ID: 15142559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytical separation of tea catechins and food-related polyphenols by high-speed counter-current chromatography.
    Yanagida A; Shoji A; Shibusawa Y; Shindo H; Tagashira M; Ikeda M; Ito Y
    J Chromatogr A; 2006 Apr; 1112(1-2):195-201. PubMed ID: 16239007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Chemical studies on plant polyphenols and formation of black tea polyphenols].
    Tanaka T
    Yakugaku Zasshi; 2008 Aug; 128(8):1119-31. PubMed ID: 18670177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Study of the Stereochemistry and Oxidation Mechanism of Plant Polyphenols, Assisted by Computational Chemistry].
    Matsuo Y
    Yakugaku Zasshi; 2017; 137(3):347-354. PubMed ID: 28250332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of the Nucleophilic Property of Tea Polyphenols.
    Meng Q; Li S; Huang J; Wei CC; Wan X; Sang S; Ho CT
    J Agric Food Chem; 2019 May; 67(19):5379-5383. PubMed ID: 30406649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical synthesis of tea polyphenols and related compounds.
    Asakawa T; Hamashima Y; Kan T
    Curr Pharm Des; 2013; 19(34):6207-17. PubMed ID: 23448439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative characterisation of green tea and black tea cream: physicochemical and phytochemical nature.
    Lin X; Chen Z; Zhang Y; Luo W; Tang H; Deng B; Deng J; Li B
    Food Chem; 2015 Apr; 173():432-40. PubMed ID: 25466042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altering the phenolics profile of a green tea leaves extract using exogenous oxidases.
    Verloop AJ; Gruppen H; Bisschop R; Vincken JP
    Food Chem; 2016 Apr; 196():1197-206. PubMed ID: 26593607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemistry of secondary polyphenols produced during processing of tea and selected foods.
    Tanaka T; Matsuo Y; Kouno I
    Int J Mol Sci; 2009 Dec; 11(1):14-40. PubMed ID: 20161999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research progress on the response of tea catechins to drought stress.
    Lv Z; Zhang C; Shao C; Liu B; Liu E; Yuan D; Zhou Y; Shen C
    J Sci Food Agric; 2021 Oct; 101(13):5305-5313. PubMed ID: 34031895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass spectrometric characterization of black tea thearubigins leading to an oxidative cascade hypothesis for thearubigin formation.
    Kuhnert N; Drynan JW; Obuchowicz J; Clifford MN; Witt M
    Rapid Commun Mass Spectrom; 2010 Dec; 24(23):3387-404. PubMed ID: 21072794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions among chemical components of Cocoa tea (Camellia ptilophylla Chang), a naturally low caffeine-containing tea species.
    Lin X; Chen Z; Zhang Y; Gao X; Luo W; Li B
    Food Funct; 2014 Jun; 5(6):1175-85. PubMed ID: 24699984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.