These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 28948758)

  • 1. Controlled Patterning of Plasmonic Dimers by Using an Ultrathin Nanoporous Alumina Membrane as a Shadow Mask.
    Hao Q; Huang H; Fan X; Yin Y; Wang J; Li W; Qiu T; Ma L; Chu PK; Schmidt OG
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36199-36205. PubMed ID: 28948758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Density 2D Homo- and Hetero- Plasmonic Dimers with Universal Sub-10-nm Gaps.
    Zhang M; Large N; Koh AL; Cao Y; Manjavacas A; Sinclair R; Nordlander P; Wang SX
    ACS Nano; 2015 Sep; 9(9):9331-9. PubMed ID: 26202803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps of 5 nm Fabricated by Ultrathin Aluminum Mask Technique.
    Fu Q; Zhan Z; Dou J; Zheng X; Xu R; Wu M; Lei Y
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13322-8. PubMed ID: 26023763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevated gold ellipse nanoantenna dimers as sensitive and tunable surface enhanced Raman spectroscopy substrates.
    Jubb AM; Jiao Y; Eres G; Retterer ST; Gu B
    Nanoscale; 2016 Mar; 8(10):5641-8. PubMed ID: 26893035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large area metal nanowire arrays with tunable sub-20 nm nanogaps.
    Le Thi Ngoc L; Jin M; Wiedemair J; van den Berg A; Carlen ET
    ACS Nano; 2013 Jun; 7(6):5223-34. PubMed ID: 23647306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser-Scanning-Guided Assembly of Quasi-3D Patterned Arrays of Plasmonic Dimers for Information Encryption.
    Yang F; Ye S; Dong W; Zheng D; Xia Y; Yi C; Tao J; Sun C; Zhang L; Wang L; Chen Q; Wang Y; Nie Z
    Adv Mater; 2021 Jun; 33(24):e2100325. PubMed ID: 33969563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile fabrication of 2D hetero core-satellites patterned Ag nanoparticle arrays with tunable plasmonic bands for SERS detection.
    Cai Y; Huang L; Wang H; Dong W; Zhang Y; Zhang W; Liu Y; Li G; Shang F; Tong H
    Nanotechnology; 2019 Mar; 30(12):125701. PubMed ID: 30572325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable surface-enhanced Raman scattering from high-density gold semishell arrays with controllable dimensions.
    Lang X; Li J; Luo X; Zhang Y; Yin Y; Qiu T
    Chemphyschem; 2014 Feb; 15(2):337-43. PubMed ID: 24375842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic and SERS performances of compound nanohole arrays fabricated by shadow sphere lithography.
    Skehan C; Ai B; Larson SR; Stone KM; Dennis WM; Zhao Y
    Nanotechnology; 2018 Mar; 29(9):095301. PubMed ID: 29320374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical Assembly of Plasmonic Nanoparticle Heterodimer Arrays with Tunable Sub-5 nm Nanogaps.
    Li J; Deng TS; Liu X; Dolan JA; Scherer NF; Nealey PF
    Nano Lett; 2019 Jul; 19(7):4314-4320. PubMed ID: 31184897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile design of ultra-thin anodic aluminum oxide membranes for the fabrication of plasmonic nanoarrays.
    Hao Q; Huang H; Fan X; Hou X; Yin Y; Li W; Si L; Nan H; Wang H; Mei Y; Qiu T; Chu PK
    Nanotechnology; 2017 Mar; 28(10):105301. PubMed ID: 28139464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wafer-Scale Nanopillars Derived from Block Copolymer Lithography for Surface-Enhanced Raman Spectroscopy.
    Li T; Wu K; Rindzevicius T; Wang Z; Schulte L; Schmidt MS; Boisen A; Ndoni S
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15668-75. PubMed ID: 27254397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitive SERS detection at the single-particle level based on nanometer-separated mushroom-shaped plasmonic dimers.
    Xiang Q; Li Z; Zheng M; Liu Q; Chen Y; Yang L; Jiang T; Duan H
    Nanotechnology; 2018 Mar; 29(10):105301. PubMed ID: 29319003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vertically oriented sub-10-nm plasmonic nanogap arrays.
    Im H; Bantz KC; Lindquist NC; Haynes CL; Oh SH
    Nano Lett; 2010 Jun; 10(6):2231-6. PubMed ID: 20499849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Density Plasmonic Nanoparticle Arrays Deposited on Nanoporous Anodic Alumina Templates for Optical Sensor Applications.
    Malinovskis U; Poplausks R; Erts D; Ramser K; Tamulevičius S; Tamulevičienė A; Gu Y; Prikulis J
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30987127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid nanoparticle-nanoline plasmonic cavities as SERS substrates with gap-controlled enhancements and resonances.
    Sharma Y; Dhawan A
    Nanotechnology; 2014 Feb; 25(8):085202. PubMed ID: 24492249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic layer deposition assisted fabrication of large-scale metal nanogaps for surface enhanced Raman scattering.
    Cheng T; Zhu Z; Wang X; Zhu L; Li A; Jiang L; Cao Y
    Nanotechnology; 2023 Apr; 34(26):. PubMed ID: 36996801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Massively Parallel Arrays of Size-Controlled Metallic Nanogaps with Gap-Widths Down to the Sub-3-nm Level.
    Luo S; Mancini A; Berté R; Hoff BH; Maier SA; de Mello JC
    Adv Mater; 2021 May; 33(20):e2100491. PubMed ID: 33939199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps.
    Duan H; Hu H; Kumar K; Shen Z; Yang JK
    ACS Nano; 2011 Sep; 5(9):7593-600. PubMed ID: 21846105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.