These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 28948844)
41. Targeted next generation sequencing application in cardiac channelopathies: Analysis of a cohort of autopsy-negative sudden unexplained deaths. Farrugia A; Keyser C; Hollard C; Raul JS; Muller J; Ludes B Forensic Sci Int; 2015 Sep; 254():5-11. PubMed ID: 26164358 [TBL] [Abstract][Full Text] [Related]
42. Simultaneous detection of human mitochondrial DNA and nuclear-inserted mitochondrial-origin sequences (NumtS) using forensic mtDNA amplification strategies and pyrosequencing technology. Bintz BJ; Dixon GB; Wilson MR J Forensic Sci; 2014 Jul; 59(4):1064-73. PubMed ID: 24738853 [TBL] [Abstract][Full Text] [Related]
43. Microbial forensics: next-generation sequencing as catalyst: The use of new sequencing technologies to analyze whole microbial communities could become a powerful tool for forensic and criminal investigations. Kuiper I EMBO Rep; 2016 Aug; 17(8):1085-7. PubMed ID: 27325822 [TBL] [Abstract][Full Text] [Related]
45. In silico detection of phylogenetic informative Y-chromosomal single nucleotide polymorphisms from whole genome sequencing data. Van Geystelen A; Wenseleers T; Decorte R; Caspers MJ; Larmuseau MH Electrophoresis; 2014 Nov; 35(21-22):3102-10. PubMed ID: 24615884 [TBL] [Abstract][Full Text] [Related]
46. Repair of DNA damage caused by cytosine deamination in mitochondrial DNA of forensic case samples. Gorden EM; Sturk-Andreaggi K; Marshall C Forensic Sci Int Genet; 2018 May; 34():257-264. PubMed ID: 29573606 [TBL] [Abstract][Full Text] [Related]
47. Forensic Analysis of Mitochondrial and Autosomal Markers Using Pyrosequencing®. Bus MM; Edlund H; Allen M Methods Mol Biol; 2015; 1315():379-96. PubMed ID: 26103912 [TBL] [Abstract][Full Text] [Related]
48. Current and emerging tools for the recovery of genetic information from post mortem samples: New directions for disaster victim identification. Watherston J; McNevin D; Gahan ME; Bruce D; Ward J Forensic Sci Int Genet; 2018 Nov; 37():270-282. PubMed ID: 30181101 [TBL] [Abstract][Full Text] [Related]
49. "New turns from old STaRs": enhancing the capabilities of forensic short tandem repeat analysis. Phillips C; Gelabert-Besada M; Fernandez-Formoso L; García-Magariños M; Santos C; Fondevila M; Ballard D; Syndercombe Court D; Carracedo A; Lareu MV Electrophoresis; 2014 Nov; 35(21-22):3173-87. PubMed ID: 24888494 [TBL] [Abstract][Full Text] [Related]
50. Evaluation of the iPLEX® Sample ID Plus Panel designed for the Sequenom MassARRAY® system. A SNP typing assay developed for human identification and sample tracking based on the SNPforID panel. Johansen P; Andersen JD; Børsting C; Morling N Forensic Sci Int Genet; 2013 Sep; 7(5):482-7. PubMed ID: 23948317 [TBL] [Abstract][Full Text] [Related]
51. DNA Data Collection and Analysis in the Forensic Arena. Grabell S; Shomron N Methods Mol Biol; 2021; 2243():355-368. PubMed ID: 33606268 [TBL] [Abstract][Full Text] [Related]
52. Informativeness of NGS Analysis for Vaginal Fluid Identification. Giampaoli S; DeVittori E; Valeriani F; Berti A; Romano Spica V J Forensic Sci; 2017 Jan; 62(1):192-196. PubMed ID: 27907225 [TBL] [Abstract][Full Text] [Related]
53. A SNaPshot of next generation sequencing for forensic SNP analysis. Daniel R; Santos C; Phillips C; Fondevila M; van Oorschot RA; Carracedo A; Lareu MV; McNevin D Forensic Sci Int Genet; 2015 Jan; 14():50-60. PubMed ID: 25282603 [TBL] [Abstract][Full Text] [Related]
54. Sequencing the hypervariable regions of human mitochondrial DNA using massively parallel sequencing: Enhanced data acquisition for DNA samples encountered in forensic testing. Davis C; Peters D; Warshauer D; King J; Budowle B Leg Med (Tokyo); 2015 Mar; 17(2):123-7. PubMed ID: 25459369 [TBL] [Abstract][Full Text] [Related]
55. A review of bioinformatic methods for forensic DNA analyses. Liu YY; Harbison S Forensic Sci Int Genet; 2018 Mar; 33():117-128. PubMed ID: 29247928 [TBL] [Abstract][Full Text] [Related]
56. [Review of Second Generation Sequencing and Its Application in Forensic Genetics]. Zhang SH; Bian YN; Zhao Q; Li CT Fa Yi Xue Za Zhi; 2016 Aug; 32(4):282-289. PubMed ID: 29188673 [TBL] [Abstract][Full Text] [Related]
57. Increasing the reach of forensic genetics with massively parallel sequencing. Budowle B; Schmedes SE; Wendt FR Forensic Sci Med Pathol; 2017 Sep; 13(3):342-349. PubMed ID: 28631109 [TBL] [Abstract][Full Text] [Related]
58. Mitochondrial DNA heteroplasmy in the emerging field of massively parallel sequencing. Just RS; Irwin JA; Parson W Forensic Sci Int Genet; 2015 Sep; 18():131-9. PubMed ID: 26009256 [TBL] [Abstract][Full Text] [Related]
59. Choice of next-generation sequencing pipelines. Del Chierico F; Ancora M; Marcacci M; Cammà C; Putignani L; Conti S Methods Mol Biol; 2015; 1231():31-47. PubMed ID: 25343857 [TBL] [Abstract][Full Text] [Related]
60. Increased forensic efficiency of DNA fingerprints through simultaneous resolution of length and nucleotide variability by high-performance mass spectrometry. Oberacher H; Pitterl F; Huber G; Niederstätter H; Steinlechner M; Parson W Hum Mutat; 2008 Mar; 29(3):427-32. PubMed ID: 18076121 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]