These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28948937)

  • 1. Anticipatory detection of turning in humans for intuitive control of robotic mobility assistance.
    Farkhatdinov I; Roehri N; Burdet E
    Bioinspir Biomim; 2017 Sep; 12(5):055004. PubMed ID: 28948937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Walking with robot assistance: the influence of body weight support on the trunk and pelvis kinematics.
    Swinnen E; Baeyens JP; Knaepen K; Michielsen M; Hens G; Clijsen R; Goossens M; Buyl R; Meeusen R; Kerckhofs E
    Disabil Rehabil Assist Technol; 2015 May; 10(3):252-7. PubMed ID: 24512196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical human-robot interaction of an active pelvis orthosis: toward ergonomic assessment of wearable robots.
    d'Elia N; Vanetti F; Cempini M; Pasquini G; Parri A; Rabuffetti M; Ferrarin M; Molino Lova R; Vitiello N
    J Neuroeng Rehabil; 2017 Apr; 14(1):29. PubMed ID: 28410594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Body weight support during robot-assisted walking: influence on the trunk and pelvis kinematics.
    Swinnen E; Baeyens JP; Hens G; Knaepen K; Beckwée D; Michielsen M; Clijsen R; Kerckhofs E
    NeuroRehabilitation; 2015; 36(1):81-91. PubMed ID: 25547772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematics of turning during walking over ground and on a rotating treadmill.
    Pavčič J; Matjačić Z; Olenšek A
    J Neuroeng Rehabil; 2014 Aug; 11():127. PubMed ID: 25151405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of hip strength on lower-limb, pelvis, and trunk kinematics and coordination patterns during walking and hopping in healthy women.
    Smith JA; Popovich JM; Kulig K
    J Orthop Sports Phys Ther; 2014 Jul; 44(7):525-31. PubMed ID: 24816500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slower Reorientation of Trunk for Reactive Turning while Walking in Hemiparesis Stroke Patients.
    Nakamura T; Higuchi T; Kikumoto T; Takeda T; Tashiro H; Hoshi F
    J Mot Behav; 2019; 51(6):640-646. PubMed ID: 30600784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole-body and segment angular momentum during 90-degree turns.
    Nolasco LA; Silverman AK; Gates DH
    Gait Posture; 2019 May; 70():12-19. PubMed ID: 30776765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trunk-pelvis coordination during turning: A cross sectional study of young adults with and without a history of low back pain.
    Smith JA; Kulig K
    Clin Biomech (Bristol, Avon); 2016 Jul; 36():58-64. PubMed ID: 27214247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intuitive adaptive orientation control of assistive robots for people living with upper limb disabilities.
    Vu DS; Allard UC; Gosselin C; Routhier F; Gosselin B; Campeau-Lecours A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():795-800. PubMed ID: 28813917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gaze and postural reorientation in the control of locomotor steering after stroke.
    Lamontagne A; Fung J
    Neurorehabil Neural Repair; 2009; 23(3):256-66. PubMed ID: 19060133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decentralized control with cross-coupled sensory feedback between body and limbs in sprawling locomotion.
    Suzuki S; Kano T; Ijspeert AJ; Ishiguro A
    Bioinspir Biomim; 2019 Sep; 14(6):066010. PubMed ID: 31469116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Head motion in humans alternating between straight and curved walking path: combination of stabilizing and anticipatory orienting mechanisms.
    Hicheur H; Vieilledent S; Berthoz A
    Neurosci Lett; 2005 Jul 22-29; 383(1-2):87-92. PubMed ID: 15936517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human walking along a curved path. I. Body trajectory, segment orientation and the effect of vision.
    Courtine G; Schieppati M
    Eur J Neurosci; 2003 Jul; 18(1):177-90. PubMed ID: 12859351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of anticipatory orienting strategies and trajectory formation in goal-oriented locomotion.
    Belmonti V; Cioni G; Berthoz A
    Exp Brain Res; 2013 May; 227(1):131-47. PubMed ID: 23588420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Individual muscle contributions to circular turning mechanics.
    Ventura JD; Klute GK; Neptune RR
    J Biomech; 2015 Apr; 48(6):1067-74. PubMed ID: 25700608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinematics of the Pelvis, Torso, and Lower Limb During Obstacle Negotiation While Under Temporal Constraints.
    Christensen JC; Wilson CR; Merryweather AS; Foreman KB
    Anat Rec (Hoboken); 2017 Apr; 300(4):732-738. PubMed ID: 28297177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constraining eye movement in individuals with Parkinson's disease during walking turns.
    Ambati VN; Saucedo F; Murray NG; Powell DW; Reed-Jones RJ
    Exp Brain Res; 2016 Oct; 234(10):2957-65. PubMed ID: 27324086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robot-assisted walking with the Lokomat: the influence of different levels of guidance force on thorax and pelvis kinematics.
    Swinnen E; Baeyens JP; Knaepen K; Michielsen M; Clijsen R; Beckwée D; Kerckhofs E
    Clin Biomech (Bristol, Avon); 2015 Mar; 30(3):254-9. PubMed ID: 25662678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel robot for imposing perturbations during overground walking: mechanism, control and normative stepping responses.
    Olenšek A; Zadravec M; Matjačić Z
    J Neuroeng Rehabil; 2016 Jun; 13(1):55. PubMed ID: 27287551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.