BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 28949076)

  • 1. Rules and tools to predict the splicing effects of exonic and intronic mutations.
    Ohno K; Takeda JI; Masuda A
    Wiley Interdiscip Rev RNA; 2018 Jan; 9(1):. PubMed ID: 28949076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IntSplice: prediction of the splicing consequences of intronic single-nucleotide variations in the human genome.
    Shibata A; Okuno T; Rahman MA; Azuma Y; Takeda J; Masuda A; Selcen D; Engel AG; Ohno K
    J Hum Genet; 2016 Jul; 61(7):633-40. PubMed ID: 27009626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding human DNA variants affecting pre-mRNA splicing in the NGS era.
    Dufner-Almeida LG; do Carmo RT; Masotti C; Haddad LA
    Adv Genet; 2019; 103():39-90. PubMed ID: 30904096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic features defining exonic variants that modulate splicing.
    Woolfe A; Mullikin JC; Elnitski L
    Genome Biol; 2010; 11(2):R20. PubMed ID: 20158892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global control of aberrant splice-site activation by auxiliary splicing sequences: evidence for a gradient in exon and intron definition.
    Královicová J; Vorechovsky I
    Nucleic Acids Res; 2007; 35(19):6399-413. PubMed ID: 17881373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IntSplice2: Prediction of the Splicing Effects of Intronic Single-Nucleotide Variants Using LightGBM Modeling.
    Takeda JI; Fukami S; Tamura A; Shibata A; Ohno K
    Front Genet; 2021; 12():701076. PubMed ID: 34349788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Splicing mutations in human genetic disorders: examples, detection, and confirmation.
    Anna A; Monika G
    J Appl Genet; 2018 Aug; 59(3):253-268. PubMed ID: 29680930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive characterisation of intronic mis-splicing mutations in human cancers.
    Jung H; Lee KS; Choi JK
    Oncogene; 2021 Feb; 40(7):1347-1361. PubMed ID: 33420369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of NF1 splicing mutations in Korean patients with neurofibromatosis type 1.
    Jang MA; Kim YE; Kim SK; Lee MK; Kim JW; Ki CS
    J Hum Genet; 2016 Aug; 61(8):705-9. PubMed ID: 27074763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Familial adenomatous polyposis: aberrant splicing due to missense or silent mutations in the APC gene.
    Aretz S; Uhlhaas S; Sun Y; Pagenstecher C; Mangold E; Caspari R; Möslein G; Schulmann K; Propping P; Friedl W
    Hum Mutat; 2004 Nov; 24(5):370-80. PubMed ID: 15459959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Splicing mutations in inherited retinal diseases.
    Weisschuh N; Buena-Atienza E; Wissinger B
    Prog Retin Eye Res; 2021 Jan; 80():100874. PubMed ID: 32553897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defective pre-mRNA splicing in PKD1 due to presumed missense and synonymous mutations causing autosomal dominant polycystic disease.
    Gonzalez-Paredes FJ; Ramos-Trujillo E; Claverie-Martin F
    Gene; 2014 Aug; 546(2):243-9. PubMed ID: 24907393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic mRNA analysis for the effect of MLH1 and MSH2 missense and silent mutations on aberrant splicing.
    Auclair J; Busine MP; Navarro C; Ruano E; Montmain G; Desseigne F; Saurin JC; Lasset C; Bonadona V; Giraud S; Puisieux A; Wang Q
    Hum Mutat; 2006 Feb; 27(2):145-54. PubMed ID: 16395668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico and in vivo splicing analysis of MLH1 and MSH2 missense mutations shows exon- and tissue-specific effects.
    Lastella P; Surdo NC; Resta N; Guanti G; Stella A
    BMC Genomics; 2006 Sep; 7():243. PubMed ID: 16995940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vulnerable exons, like ACADM exon 5, are highly dependent on maintaining a correct balance between splicing enhancers and silencers.
    Holm LL; Doktor TK; Hansen MB; Petersen USS; Andresen BS
    Hum Mutat; 2022 Feb; 43(2):253-265. PubMed ID: 34923709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intronic PAH gene mutations cause a splicing defect by a novel mechanism involving U1snRNP binding downstream of the 5' splice site.
    Martínez-Pizarro A; Dembic M; Pérez B; Andresen BS; Desviat LR
    PLoS Genet; 2018 Apr; 14(4):e1007360. PubMed ID: 29684050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational prediction of splicing regulatory elements shared by Tetrapoda organisms.
    Churbanov A; Vorechovský I; Hicks C
    BMC Genomics; 2009 Nov; 10():508. PubMed ID: 19889216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AG-exclusion zone revisited: Lessons to learn from 91 intronic NF1 3' splice site mutations outside the canonical AG-dinucleotides.
    Wimmer K; Schamschula E; Wernstedt A; Traunfellner P; Amberger A; Zschocke J; Kroisel P; Chen Y; Callens T; Messiaen L
    Hum Mutat; 2020 Jun; 41(6):1145-1156. PubMed ID: 32126153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aberrant splicing in MLH1 and MSH2 due to exonic and intronic variants.
    Pagenstecher C; Wehner M; Friedl W; Rahner N; Aretz S; Friedrichs N; Sengteller M; Henn W; Buettner R; Propping P; Mangold E
    Hum Genet; 2006 Mar; 119(1-2):9-22. PubMed ID: 16341550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interplay between exonic splicing enhancers, mRNA processing, and mRNA surveillance in the dystrophic Mdx mouse.
    Buvoli M; Buvoli A; Leinwand LA
    PLoS One; 2007 May; 2(5):e427. PubMed ID: 17487273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.