These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28949219)

  • 21. Impact of Architectural Asymmetry on Frank-Kasper Phase Formation in Block Polymer Melts.
    Chang AB; Bates FS
    ACS Nano; 2020 Sep; 14(9):11463-11472. PubMed ID: 32820895
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of binary nanoparticle superlattices from soft potentials.
    Horst N; Travesset A
    J Chem Phys; 2016 Jan; 144(1):014502. PubMed ID: 26747810
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Frank-Kasper Phases Self-Assembled from a Linear A
    Zhao B; Wang C; Chen Y; Liu M
    Langmuir; 2021 May; 37(18):5642-5650. PubMed ID: 33929198
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Systematic Mapping of Binary Nanocrystal Superlattices: The Role of Topology in Phase Selection.
    Coropceanu I; Boles MA; Talapin DV
    J Am Chem Soc; 2019 Apr; 141(14):5728-5740. PubMed ID: 30868880
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Exceptionally Stable and Scalable Sugar-Polyolefin Frank-Kasper A15 Phase.
    Lachmayr KK; Wentz CM; Sita LR
    Angew Chem Int Ed Engl; 2020 Jan; 59(4):1521-1526. PubMed ID: 31703151
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Many-body effects in nanocrystal superlattices: departure from sphere packing explains stability of binary phases.
    Boles MA; Talapin DV
    J Am Chem Soc; 2015 Apr; 137(13):4494-502. PubMed ID: 25773648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiple 2D crystal structures in bilayered lamellae from the direct self-assembly of 3D systems of soft Janus particles.
    Sun YW; Li ZW; Sun ZY
    Phys Chem Chem Phys; 2022 Mar; 24(13):7874-7881. PubMed ID: 35302134
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor.
    Bodnarchuk MI; Kovalenko MV; Heiss W; Talapin DV
    J Am Chem Soc; 2010 Sep; 132(34):11967-77. PubMed ID: 20701285
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Geometry induced sequence of nanoscale Frank-Kasper and quasicrystal mesophases in giant surfactants.
    Yue K; Huang M; Marson RL; He J; Huang J; Zhou Z; Wang J; Liu C; Yan X; Wu K; Guo Z; Liu H; Zhang W; Ni P; Wesdemiotis C; Zhang WB; Glotzer SC; Cheng SZ
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14195-14200. PubMed ID: 27911786
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Soft Skyrmions, Spontaneous Valence and Selection Rules in Nanoparticle Superlattices.
    Travesset A
    ACS Nano; 2017 Jun; 11(6):5375-5382. PubMed ID: 28514592
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conformational Asymmetry and Quasicrystal Approximants in Linear Diblock Copolymers.
    Schulze MW; Lewis RM; Lettow JH; Hickey RJ; Gillard TM; Hillmyer MA; Bates FS
    Phys Rev Lett; 2017 May; 118(20):207801. PubMed ID: 28581782
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Capping Ligand Vortices as "Atomic Orbitals" in Nanocrystal Self-Assembly.
    Waltmann C; Horst N; Travesset A
    ACS Nano; 2017 Nov; 11(11):11273-11282. PubMed ID: 29077382
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Frank-Kasper, quasicrystalline and related phases in liquid crystals.
    Ungar G; Zeng X
    Soft Matter; 2005 Jun; 1(2):95-106. PubMed ID: 32646081
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices.
    Udayabhaskararao T; Altantzis T; Houben L; Coronado-Puchau M; Langer J; Popovitz-Biro R; Liz-Marzán LM; Vuković L; Král P; Bals S; Klajn R
    Science; 2017 Oct; 358(6362):514-518. PubMed ID: 29074773
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nesting of fullerenes and Frank-Kasper polyhedra.
    Alvarez S
    Dalton Trans; 2006 May; (17):2045-51. PubMed ID: 16625246
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inverse Design of Self-Assembling Frank-Kasper Phases and Insights Into Emergent Quasicrystals.
    Lindquist BA; Jadrich RB; Piñeros WD; Truskett TM
    J Phys Chem B; 2018 May; 122(21):5547-5556. PubMed ID: 29486558
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dodecagonal quasicrystalline order in a diblock copolymer melt.
    Gillard TM; Lee S; Bates FS
    Proc Natl Acad Sci U S A; 2016 May; 113(19):5167-72. PubMed ID: 27118844
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Space fullerenes: a computer search for new Frank-Kasper structures.
    Dutour Sikirić M; Delgado-Friedrichs O; Deza M
    Acta Crystallogr A; 2010 Sep; 66(Pt 5):602-15. PubMed ID: 20720324
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Complex structures arising from the self-assembly of a simple organic salt.
    Montis R; Fusaro L; Falqui A; Hursthouse MB; Tumanov N; Coles SJ; Threlfall TL; Horton PN; Sougrat R; Lafontaine A; Coquerel G; Rae AD
    Nature; 2021 Feb; 590(7845):275-278. PubMed ID: 33568820
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA based strategy to nanoparticle superlattices.
    Mazid RR; Si KJ; Cheng W
    Methods; 2014 May; 67(2):215-26. PubMed ID: 24508551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.