BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 28949301)

  • 1. Artificial lateral line based local sensing between two adjacent robotic fish.
    Zheng X; Wang C; Fan R; Xie G
    Bioinspir Biomim; 2017 Nov; 13(1):016002. PubMed ID: 28949301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial lateral line based relative state estimation between an upstream oscillating fin and a downstream robotic fish.
    Zheng X; Wang W; Li L; Xie G
    Bioinspir Biomim; 2020 Nov; 16(1):. PubMed ID: 32927443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model of the lateral line of fish for vortex sensing.
    Ren Z; Mohseni K
    Bioinspir Biomim; 2012 Sep; 7(3):036016. PubMed ID: 22585366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-sensor fusion based attitude holding of a fin-actuated robotic fish.
    Zheng J; Zheng X; Zhang T; Xiong M; Xie G
    Bioinspir Biomim; 2020 May; 15(4):046003. PubMed ID: 32187586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model-based observer and feedback control design for a rigid Joukowski foil in a Kármán vortex street.
    Free BA; Paley DA
    Bioinspir Biomim; 2018 Mar; 13(3):035001. PubMed ID: 29355109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What information do Kármán streets offer to flow sensing?
    Akanyeti O; Venturelli R; Visentin F; Chambers L; Megill WM; Fiorini P
    Bioinspir Biomim; 2011 Sep; 6(3):036001. PubMed ID: 21670492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fish perspective: detecting flow features while moving using an artificial lateral line in steady and unsteady flow.
    Chambers LD; Akanyeti O; Venturelli R; Ježov J; Brown J; Kruusmaa M; Fiorini P; Megill WM
    J R Soc Interface; 2014 Oct; 11(99):. PubMed ID: 25079867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrodynamics of a robotic fish tail: effects of the caudal peduncle, fin ray motions and the flow speed.
    Ren Z; Yang X; Wang T; Wen L
    Bioinspir Biomim; 2016 Feb; 11(1):016008. PubMed ID: 26855405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning hydrodynamic signatures through proprioceptive sensing by bioinspired swimmers.
    Pollard B; Tallapragada P
    Bioinspir Biomim; 2021 Jan; 16(2):. PubMed ID: 33271521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-inspired aquatic robotics by untethered piezohydroelastic actuation.
    Cen L; Erturk A
    Bioinspir Biomim; 2013 Mar; 8(1):016006. PubMed ID: 23348365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial lateral line with biomimetic neuromasts to emulate fish sensing.
    Yang Y; Nguyen N; Chen N; Lockwood M; Tucker C; Hu H; Bleckmann H; Liu C; Jones DL
    Bioinspir Biomim; 2010 Mar; 5(1):16001. PubMed ID: 20061601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bio-inspired real-time capable artificial lateral line system for freestream flow measurements.
    Abels C; Qualtieri A; De Vittorio M; Megill WM; Rizzi F
    Bioinspir Biomim; 2016 Jun; 11(3):035006. PubMed ID: 27257144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamic pressure sensing with an artificial lateral line in steady and unsteady flows.
    Venturelli R; Akanyeti O; Visentin F; Ježov J; Chambers LD; Toming G; Brown J; Kruusmaa M; Megill WM; Fiorini P
    Bioinspir Biomim; 2012 Sep; 7(3):036004. PubMed ID: 22498729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic study of freely swimming shark fish propulsion for marine vehicles using 2D particle image velocimetry.
    Babu MN; Mallikarjuna JM; Krishnankutty P
    Robotics Biomim; 2016; 3():3. PubMed ID: 27077022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distributed flow estimation and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line.
    DeVries L; Lagor FD; Lei H; Tan X; Paley DA
    Bioinspir Biomim; 2015 Mar; 10(2):025002. PubMed ID: 25807584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal Sensor Placement of the Artificial Lateral Line for Flow Parametric Identification.
    Xu D; Zhang Y; Tian J; Fan H; Xie Y; Dai W
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34207715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Undulating fins produce off-axis thrust and flow structures.
    Neveln ID; Bale R; Bhalla AP; Curet OM; Patankar NA; MacIver MA
    J Exp Biol; 2014 Jan; 217(Pt 2):201-13. PubMed ID: 24072799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wake tracking and the detection of vortex rings by the canal lateral line of fish.
    Franosch JM; Hagedorn HJ; Goulet J; Engelmann J; van Hemmen JL
    Phys Rev Lett; 2009 Aug; 103(7):078102. PubMed ID: 19792690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow.
    Liao JC
    J Exp Biol; 2006 Oct; 209(Pt 20):4077-90. PubMed ID: 17023602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kármán vortex street detection by the lateral line.
    Chagnaud BP; Bleckmann H; Hofmann MH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Jul; 193(7):753-63. PubMed ID: 17503054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.