These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 28949301)

  • 21. Man-made flows from a fish's perspective: autonomous classification of turbulent fishway flows with field data collected using an artificial lateral line.
    Tuhtan JA; Fuentes-Perez JF; Toming G; Schneider M; Schwarzenberger R; Schletterer M; Kruusmaa M
    Bioinspir Biomim; 2018 May; 13(4):046006. PubMed ID: 29629711
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MEMS sensors for assessing flow-related control of an underwater biomimetic robotic stingray.
    Asadnia M; Kottapalli AG; Haghighi R; Cloitre A; Alvarado PV; Miao J; Triantafyllou M
    Bioinspir Biomim; 2015 May; 10(3):036008. PubMed ID: 25984934
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fish-inspired robots: design, sensing, actuation, and autonomy--a review of research.
    Raj A; Thakur A
    Bioinspir Biomim; 2016 Apr; 11(3):031001. PubMed ID: 27073001
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Soft dorsal/anal fins pairs for roll and yaw motion in robotic fish.
    Coral W; Rossi C
    Bioinspir Biomim; 2022 Nov; 18(1):. PubMed ID: 36347041
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Effects of Fluidic Loading on Underwater Contact Sensing with Robotic Fins and Beams.
    Kahn JC; Tangorra JL
    IEEE Trans Haptics; 2016; 9(2):184-95. PubMed ID: 26441453
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Head width influences flow sensing by the lateral line canal system in fishes.
    Yanagitsuru YR; Akanyeti O; Liao JC
    J Exp Biol; 2018 Oct; 221(Pt 21):. PubMed ID: 30194249
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Behavior, Electrophysiology, and Robotics Experiments to Study Lateral Line Sensing in Fishes.
    Haehnel-Taguchi M; Akanyeti O; Liao JC
    Integr Comp Biol; 2018 Nov; 58(5):874-883. PubMed ID: 29982706
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena.
    Asadnia M; Kottapalli AG; Miao J; Warkiani ME; Triantafyllou MS
    J R Soc Interface; 2015 Oct; 12(111):20150322. PubMed ID: 26423435
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In-line swimming dynamics revealed by fish interacting with a robotic mechanism.
    Thandiackal R; Lauder G
    Elife; 2023 Feb; 12():. PubMed ID: 36744863
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A bio-inspired robotic fish utilizes the snap-through buckling of its spine to generate accelerations of more than 20g.
    Currier TM; Lheron S; Modarres-Sadeghi Y
    Bioinspir Biomim; 2020 Aug; 15(5):055006. PubMed ID: 32503011
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Propulsive performance of an under-actuated robotic ribbon fin.
    Liu H; Curet OM
    Bioinspir Biomim; 2017 Jun; 12(3):036015. PubMed ID: 28481218
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mexican blind cavefish use mouth suction to detect obstacles.
    Holzman R; Perkol-Finkel S; Zilman G
    J Exp Biol; 2014 Jun; 217(Pt 11):1955-62. PubMed ID: 24675558
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vortex phase matching as a strategy for schooling in robots and in fish.
    Li L; Nagy M; Graving JM; Bak-Coleman J; Xie G; Couzin ID
    Nat Commun; 2020 Oct; 11(1):5408. PubMed ID: 33106484
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Responses of medullary lateral line units of the rudd, Scardinius erythrophthalmus, and the nase, Chondrostoma nasus, to vortex streets.
    Winkelnkemper J; Kranz S; Bleckmann H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Feb; 204(2):155-166. PubMed ID: 29075852
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolutionary multiobjective design of a flexible caudal fin for robotic fish.
    Clark AJ; Tan X; McKinley PK
    Bioinspir Biomim; 2015 Nov; 10(6):065006. PubMed ID: 26601975
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Drag force acting on a neuromast in the fish lateral line trunk canal. I. Numerical modelling of external-internal flow coupling.
    Barbier C; Humphrey JA
    J R Soc Interface; 2009 Jul; 6(36):627-40. PubMed ID: 18926967
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bio-inspired all-optical artificial neuromast for 2D flow sensing.
    Wolf BJ; Morton JAS; MacPherson WN; van Netten SM
    Bioinspir Biomim; 2018 Feb; 13(2):026013. PubMed ID: 29334081
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A simple macro-scale artificial lateral line sensor for the detection of shed vortices.
    Scott E; Hauert S
    Bioinspir Biomim; 2022 Aug; 17(5):. PubMed ID: 35896093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a bio-inspired transformable robotic fin.
    Yang Y; Xia Y; Qin F; Xu M; Li W; Zhang S
    Bioinspir Biomim; 2016 Aug; 11(5):056010. PubMed ID: 27580003
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A biorobotic model of the sunfish pectoral fin for investigations of fin sensorimotor control.
    Phelan C; Tangorra J; Lauder G; Hale M
    Bioinspir Biomim; 2010 Sep; 5(3):035003. PubMed ID: 20729572
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.