BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28949503)

  • 1. Triptorelin Tethered Multifunctional PAMAM-Histidine-PEG Nanoconstructs Enable Specific Targeting and Efficient Gene Silencing in LHRH Overexpressing Cancer Cells.
    Tambe P; Kumar P; Karpe YA; Paknikar KM; Gajbhiye V
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35562-35573. PubMed ID: 28949503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor-targeted pH/redox dual-sensitive unimolecular nanoparticles for efficient siRNA delivery.
    Chen G; Wang Y; Xie R; Gong S
    J Control Release; 2017 Aug; 259():105-114. PubMed ID: 28159516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioconjugated gold nanoparticles enhance cellular uptake: A proof of concept study for siRNA delivery in prostate cancer cells.
    Guo J; O'Driscoll CM; Holmes JD; Rahme K
    Int J Pharm; 2016 Jul; 509(1-2):16-27. PubMed ID: 27188645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic inhibition of breast cancer by co-delivery of VEGF siRNA and paclitaxel via vapreotide-modified core-shell nanoparticles.
    Feng Q; Yu MZ; Wang JC; Hou WJ; Gao LY; Ma XF; Pei XW; Niu YJ; Liu XY; Qiu C; Pang WH; Du LL; Zhang Q
    Biomaterials; 2014 Jun; 35(18):5028-38. PubMed ID: 24680191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of adhesive interactions in the specific targeting of Triptorelin-conjugated PEG-coated magnetite nanoparticles to breast cancer cells.
    Hu J; Youssefian S; Obayemi J; Malatesta K; Rahbar N; Soboyejo W
    Acta Biomater; 2018 Apr; 71():363-378. PubMed ID: 29458110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systemic delivery of siRNA by T7 peptide modified core-shell nanoparticles for targeted therapy of breast cancer.
    Yu MZ; Pang WH; Yang T; Wang JC; Wei L; Qiu C; Wu YF; Liu WZ; Wei W; Guo XY; Zhang Q
    Eur J Pharm Sci; 2016 Sep; 92():39-48. PubMed ID: 27355138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-shell type lipid/rPAA-Chol polymer hybrid nanoparticles for in vivo siRNA delivery.
    Gao LY; Liu XY; Chen CJ; Wang JC; Feng Q; Yu MZ; Ma XF; Pei XW; Niu YJ; Qiu C; Pang WH; Zhang Q
    Biomaterials; 2014 Feb; 35(6):2066-78. PubMed ID: 24315577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophobic interactions between polymeric carrier and palmitic acid-conjugated siRNA improve PEGylated polyplex stability and enhance in vivo pharmacokinetics and tumor gene silencing.
    Sarett SM; Werfel TA; Chandra I; Jackson MA; Kavanaugh TE; Hattaway ME; Giorgio TD; Duvall CL
    Biomaterials; 2016 Aug; 97():122-32. PubMed ID: 27163624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LHRH receptor-mediated delivery of siRNA using polyelectrolyte complex micelles self-assembled from siRNA-PEG-LHRH conjugate and PEI.
    Kim SH; Jeong JH; Lee SH; Kim SW; Park TG
    Bioconjug Chem; 2008 Nov; 19(11):2156-62. PubMed ID: 18850733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multifunctional peptide-lipid nanocomplexes for efficient targeted delivery of DNA and siRNA into breast cancer cells.
    Wan Y; Dai W; Nevagi RJ; Toth I; Moyle PM
    Acta Biomater; 2017 Sep; 59():257-268. PubMed ID: 28655658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acid-degradable core-shell nanoparticles for reversed tamoxifen-resistance in breast cancer by silencing manganese superoxide dismutase (MnSOD).
    Cho SK; Pedram A; Levin ER; Kwon YJ
    Biomaterials; 2013 Dec; 34(38):10228-37. PubMed ID: 24055523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference.
    Tan WB; Jiang S; Zhang Y
    Biomaterials; 2007 Mar; 28(8):1565-71. PubMed ID: 17161865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient siRNA delivery and tumor accumulation mediated by ionically cross-linked folic acid-poly(ethylene glycol)-chitosan oligosaccharide lactate nanoparticles: for the potential targeted ovarian cancer gene therapy.
    Li TS; Yawata T; Honke K
    Eur J Pharm Sci; 2014 Feb; 52():48-61. PubMed ID: 24178005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of multifunctional chitosan-siRNA nanoparticles for oral delivery applications, targeting TNF-α silencing in rats.
    He C; Yin L; Song Y; Tang C; Yin C
    Acta Biomater; 2015 Apr; 17():98-106. PubMed ID: 25662912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silencing of the metastasis-linked gene, AEG-1, using siRNA-loaded cholamine surface-modified gelatin nanoparticles in the breast carcinoma cell line MCF-7.
    Abozeid SM; Hathout RM; Abou-Aisha K
    Colloids Surf B Biointerfaces; 2016 Sep; 145():607-616. PubMed ID: 27285732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biomimetic nanovector-mediated targeted cholesterol-conjugated siRNA delivery for tumor gene therapy.
    Ding Y; Wang W; Feng M; Wang Y; Zhou J; Ding X; Zhou X; Liu C; Wang R; Zhang Q
    Biomaterials; 2012 Dec; 33(34):8893-905. PubMed ID: 22979990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional triblock co-polymer mP3/4HB-b-PEG-b-lPEI for efficient intracellular siRNA delivery and gene silencing.
    Zhou L; Chen Z; Wang F; Yang X; Zhang B
    Acta Biomater; 2013 Apr; 9(4):6019-31. PubMed ID: 23295402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PEGylated carboxymethyl chitosan/calcium phosphate hybrid anionic nanoparticles mediated hTERT siRNA delivery for anticancer therapy.
    Xie Y; Qiao H; Su Z; Chen M; Ping Q; Sun M
    Biomaterials; 2014 Sep; 35(27):7978-91. PubMed ID: 24939077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systemic siRNA delivery to tumors by cell-penetrating α-helical polypeptide-based metastable nanoparticles.
    Liu Y; Song Z; Zheng N; Nagasaka K; Yin L; Cheng J
    Nanoscale; 2018 Aug; 10(32):15339-15349. PubMed ID: 30070662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer nanoparticles for enhanced immune response: combined delivery of tumor antigen and small interference RNA for immunosuppressive gene to dendritic cells.
    Heo MB; Cho MY; Lim YT
    Acta Biomater; 2014 May; 10(5):2169-76. PubMed ID: 24394635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.