BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 28949514)

  • 1. Identifying Dysregulated Epigenetic Enzyme Activity in Castrate-Resistant Prostate Cancer Development.
    Lee JH; Yang B; Lindahl AJ; Damaschke N; Boersma MD; Huang W; Corey E; Jarrard DF; Denu JM
    ACS Chem Biol; 2017 Nov; 12(11):2804-2814. PubMed ID: 28949514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dysregulation of Sirtuin 2 (SIRT2) and histone H3K18 acetylation pathways associates with adverse prostate cancer outcomes.
    Damodaran S; Damaschke N; Gawdzik J; Yang B; Shi C; Allen GO; Huang W; Denu J; Jarrard D
    BMC Cancer; 2017 Dec; 17(1):874. PubMed ID: 29262808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a multiplex assay to assess activated p300/CBP in circulating prostate tumor cells.
    Filon M; Yang B; Purohit TA; Schehr J; Singh A; Bigarella M; Lewis P; Denu J; Lang J; Jarrard DF
    Oncotarget; 2023 Jul; 14():738-746. PubMed ID: 37477521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of p300 histone acetyltransferase activity and acetylation of the androgen receptor by bombesin in prostate cancer cells.
    Gong J; Zhu J; Goodman OB; Pestell RG; Schlegel PN; Nanus DM; Shen R
    Oncogene; 2006 Mar; 25(14):2011-21. PubMed ID: 16434977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetylation of Sirt2 by p300 attenuates its deacetylase activity.
    Han Y; Jin YH; Kim YJ; Kang BY; Choi HJ; Kim DW; Yeo CY; Lee KY
    Biochem Biophys Res Commun; 2008 Oct; 375(4):576-80. PubMed ID: 18722353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High glucose-induced oxidative stress represses sirtuin deacetylase expression and increases histone acetylation leading to neural tube defects.
    Yu J; Wu Y; Yang P
    J Neurochem; 2016 May; 137(3):371-83. PubMed ID: 26896748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyamines regulate gene expression by stimulating translation of histone acetyltransferase mRNAs.
    Sakamoto A; Terui Y; Uemura T; Igarashi K; Kashiwagi K
    J Biol Chem; 2020 Jun; 295(26):8736-8745. PubMed ID: 32376690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic regulation of histone H3 lysine (K) acetylation and deacetylation during prolonged oxygen deprivation in a champion anaerobe.
    Wijenayake S; Storey KB
    Mol Cell Biochem; 2020 Nov; 474(1-2):229-241. PubMed ID: 32729004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elevated level of lysine 9-acetylated histone H3 at the MDR1 promoter in multidrug-resistant cells.
    Toth M; Boros IM; Balint E
    Cancer Sci; 2012 Apr; 103(4):659-69. PubMed ID: 22320423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The SIRT2 deacetylase regulates autoacetylation of p300.
    Black JC; Mosley A; Kitada T; Washburn M; Carey M
    Mol Cell; 2008 Nov; 32(3):449-55. PubMed ID: 18995842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti-histone acetyltransferase activity from allspice extracts inhibits androgen receptor-dependent prostate cancer cell growth.
    Lee YH; Hong SW; Jun W; Cho HY; Kim HC; Jung MG; Wong J; Kim HI; Kim CH; Yoon HG
    Biosci Biotechnol Biochem; 2007 Nov; 71(11):2712-9. PubMed ID: 17986787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-activity relationship and antitumor activity of 1,4-pyrazine-containing inhibitors of histone acetyltransferases P300/CBP.
    Nie S; Wu F; Wu J; Li X; Zhou C; Yao Y; Song Y
    Eur J Med Chem; 2022 Jul; 237():114407. PubMed ID: 35512565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells.
    Kikuno N; Shiina H; Urakami S; Kawamoto K; Hirata H; Tanaka Y; Majid S; Igawa M; Dahiya R
    Int J Cancer; 2008 Aug; 123(3):552-60. PubMed ID: 18431742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histone acetylation and histone acetyltransferases show significant alterations in human abdominal aortic aneurysm.
    Han Y; Tanios F; Reeps C; Zhang J; Schwamborn K; Eckstein HH; Zernecke A; Pelisek J
    Clin Epigenetics; 2016; 8():3. PubMed ID: 26767057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours.
    Lasko LM; Jakob CG; Edalji RP; Qiu W; Montgomery D; Digiammarino EL; Hansen TM; Risi RM; Frey R; Manaves V; Shaw B; Algire M; Hessler P; Lam LT; Uziel T; Faivre E; Ferguson D; Buchanan FG; Martin RL; Torrent M; Chiang GG; Karukurichi K; Langston JW; Weinert BT; Choudhary C; de Vries P; Van Drie JH; McElligott D; Kesicki E; Marmorstein R; Sun C; Cole PA; Rosenberg SH; Michaelides MR; Lai A; Bromberg KD
    Nature; 2017 Oct; 550(7674):128-132. PubMed ID: 28953875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deacetylation of phosphoglycerate mutase in its distinct central region by SIRT2 down-regulates its enzymatic activity.
    Tsusaka T; Guo T; Yagura T; Inoue T; Yokode M; Inagaki N; Kondoh H
    Genes Cells; 2014 Oct; 19(10):766-77. PubMed ID: 25195573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A role for SIRT2-dependent histone H3K18 deacetylation in bacterial infection.
    Eskandarian HA; Impens F; Nahori MA; Soubigou G; Coppée JY; Cossart P; Hamon MA
    Science; 2013 Aug; 341(6145):1238858. PubMed ID: 23908241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide-mediated histone hyperacetylation in oral cancer: target for a water-soluble HAT inhibitor, CTK7A.
    Arif M; Vedamurthy BM; Choudhari R; Ostwal YB; Mantelingu K; Kodaganur GS; Kundu TK
    Chem Biol; 2010 Aug; 17(8):903-13. PubMed ID: 20797619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of a fluorescent histone acetyltransferase assay to probe the substrate specificity of the human p300/CBP-associated factor.
    Trievel RC; Li FY; Marmorstein R
    Anal Biochem; 2000 Dec; 287(2):319-28. PubMed ID: 11112280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of histone acetyltransferase GCN5 extends lifespan in both yeast and human cell lines.
    Huang B; Zhong D; Zhu J; An Y; Gao M; Zhu S; Dang W; Wang X; Yang B; Xie Z
    Aging Cell; 2020 Apr; 19(4):e13129. PubMed ID: 32157780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.