These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 28949549)
1. Study of the Natural Auger Suppression Mechanism in Heterostructures through Heteroboundary Engineering. Slonopas A; Tomkinson D J Phys Chem A; 2017 Oct; 121(40):7745-7750. PubMed ID: 28949549 [TBL] [Abstract][Full Text] [Related]
2. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals. Kanemitsu Y Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584 [TBL] [Abstract][Full Text] [Related]
3. Nonlinear Carrier Interactions in Lead Halide Perovskites and the Role of Defects. Srimath Kandada AR; Neutzner S; D'Innocenzo V; Tassone F; Gandini M; Akkerman QA; Prato M; Manna L; Petrozza A; Lanzani G J Am Chem Soc; 2016 Oct; 138(41):13604-13611. PubMed ID: 27665763 [TBL] [Abstract][Full Text] [Related]
4. Temperature-dependent nonradiative recombination processes in GaN-based nanowire white-light-emitting diodes on silicon. Nguyen HP; Djavid M; Cui K; Mi Z Nanotechnology; 2012 May; 23(19):194012. PubMed ID: 22539212 [TBL] [Abstract][Full Text] [Related]
10. Auger recombination of biexcitons and negative and positive trions in individual quantum dots. Park YS; Bae WK; Pietryga JM; Klimov VI ACS Nano; 2014 Jul; 8(7):7288-96. PubMed ID: 24909861 [TBL] [Abstract][Full Text] [Related]
11. Statistics of the Auger Recombination of Electrons and Holes via Defect Levels in the Band Gap-Application to Lead-Halide Perovskites. Staub F; Rau U; Kirchartz T ACS Omega; 2018 Jul; 3(7):8009-8016. PubMed ID: 31458939 [TBL] [Abstract][Full Text] [Related]
12. Taming non-radiative recombination in Si nanocrystals interlinked in a porous network. Wu R; Nekovic E; Collins J; Storey CJ; Canham LT; Navarro-Cía M; Kaplan A Phys Chem Chem Phys; 2022 Jun; 24(22):13519-13526. PubMed ID: 35583027 [TBL] [Abstract][Full Text] [Related]
13. Efficiency of GaInAs thermophotovoltaic cells: the effects of incident radiation, light trapping and recombinations. Jurczak P; Onno A; Sablon K; Liu H Opt Express; 2015 Sep; 23(19):A1208-19. PubMed ID: 26406750 [TBL] [Abstract][Full Text] [Related]
15. Boosting Biexciton Collection Efficiency at Quantum Dot-Oxide Interfaces by Hole Localization at the Quantum Dot Shell. Wang HI; Bonn M; Cánovas E J Phys Chem Lett; 2017 Jun; 8(12):2654-2658. PubMed ID: 28558226 [TBL] [Abstract][Full Text] [Related]
16. Influence of carrier screening and band filling effects on efficiency droop of InGaN light emitting diodes. Wang L; Lu C; Lu J; Liu L; Liu N; Chen Y; Zhang Y; Gu E; Hu X Opt Express; 2011 Jul; 19(15):14182-7. PubMed ID: 21934781 [TBL] [Abstract][Full Text] [Related]
17. Charging of quantum dots by sulfide redox electrolytes reduces electron injection efficiency in quantum dot sensitized solar cells. Zhu H; Song N; Lian T J Am Chem Soc; 2013 Aug; 135(31):11461-4. PubMed ID: 23865741 [TBL] [Abstract][Full Text] [Related]
18. Explanation of low efficiency droop in semipolar (202¯1¯) InGaN/GaN LEDs through evaluation of carrier recombination coefficients. Monavarian M; Rashidi A; Aragon A; Oh SH; Nami M; DenBaars SP; Feezell D Opt Express; 2017 Aug; 25(16):19343-19353. PubMed ID: 29041128 [TBL] [Abstract][Full Text] [Related]