These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28949558)

  • 1. Cavity Antiresonance Spectroscopy of Dipole Coupled Subradiant Arrays.
    Plankensteiner D; Sommer C; Ritsch H; Genes C
    Phys Rev Lett; 2017 Sep; 119(9):093601. PubMed ID: 28949558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collective super- and subradiant dynamics between distant optical quantum emitters.
    Tiranov A; Angelopoulou V; van Diepen CJ; Schrinski B; Sandberg OAD; Wang Y; Midolo L; Scholz S; Wieck AD; Ludwig A; Sørensen AS; Lodahl P
    Science; 2023 Jan; 379(6630):389-393. PubMed ID: 36701463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subradiant Emission from Regular Atomic Arrays: Universal Scaling of Decay Rates from the Generalized Bloch Theorem.
    Zhang YX; Mølmer K
    Phys Rev Lett; 2020 Dec; 125(25):253601. PubMed ID: 33416345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical Properties of Concentric Nanorings of Quantum Emitters.
    Scheil V; Holzinger R; Moreno-Cardoner M; Ritsch H
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring the superradiant and subradiant nature of two coherently coupled quantum emitters.
    Trebbia JB; Deplano Q; Tamarat P; Lounis B
    Nat Commun; 2022 May; 13(1):2962. PubMed ID: 35618729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superradiant and Subradiant Cavity Scattering by Atom Arrays.
    Yan Z; Ho J; Lu YH; Masson SJ; Asenjo-Garcia A; Stamper-Kurn DM
    Phys Rev Lett; 2023 Dec; 131(25):253603. PubMed ID: 38181363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllable Switching between Superradiant and Subradiant States in a 10-qubit Superconducting Circuit.
    Wang Z; Li H; Feng W; Song X; Song C; Liu W; Guo Q; Zhang X; Dong H; Zheng D; Wang H; Wang DW
    Phys Rev Lett; 2020 Jan; 124(1):013601. PubMed ID: 31976713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subradiance via Entanglement in Atoms with Several Independent Decay Channels.
    Hebenstreit M; Kraus B; Ostermann L; Ritsch H
    Phys Rev Lett; 2017 Apr; 118(14):143602. PubMed ID: 28430460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient nano-photonic antennas based on dark states in quantum emitter rings.
    Moreno-Cardoner M; Holzinger R; Ritsch H
    Opt Express; 2022 Mar; 30(7):10779-10791. PubMed ID: 35473037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A subradiant optical mirror formed by a single structured atomic layer.
    Rui J; Wei D; Rubio-Abadal A; Hollerith S; Zeiher J; Stamper-Kurn DM; Gross C; Bloch I
    Nature; 2020 Jul; 583(7816):369-374. PubMed ID: 32669699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic Cavities and Individual Quantum Emitters in the Strong Coupling Limit.
    Bitton O; Haran G
    Acc Chem Res; 2022 Jun; 55(12):1659-1668. PubMed ID: 35649040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superradiance and Subradiance due to Quantum Interference of Entangled Free Electrons.
    Karnieli A; Rivera N; Arie A; Kaminer I
    Phys Rev Lett; 2021 Aug; 127(6):060403. PubMed ID: 34420316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling collective spontaneous emission with plasmonic waveguides.
    Li Y; Argyropoulos C
    Opt Express; 2016 Nov; 24(23):26696-26708. PubMed ID: 27857400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Super- and sub-radiance from two-dimensional resonant dipole-dipole interactions.
    Jen HH
    Sci Rep; 2019 Apr; 9(1):5804. PubMed ID: 30967605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of Coherent Coupling between Super- and Subradiant States of an Ensemble of Cold Atoms Collectively Coupled to a Single Propagating Optical Mode.
    Pennetta R; Lechner D; Blaha M; Rauschenbeutel A; Schneeweiss P; Volz J
    Phys Rev Lett; 2022 May; 128(20):203601. PubMed ID: 35657855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subradiant Bell States in Distant Atomic Arrays.
    Guimond PO; Grankin A; Vasilyev DV; Vermersch B; Zoller P
    Phys Rev Lett; 2019 Mar; 122(9):093601. PubMed ID: 30932531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collectively enhanced Ramsey readout by cavity sub- to superradiant transition.
    Bohr EA; Kristensen SL; Hotter C; Schäffer SA; Robinson-Tait J; Thomsen JW; Zelevinsky T; Ritsch H; Müller JH
    Nat Commun; 2024 Feb; 15(1):1084. PubMed ID: 38316781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-Markovian Collective Emission from Macroscopically Separated Emitters.
    Sinha K; Meystre P; Goldschmidt EA; Fatemi FK; Rolston SL; Solano P
    Phys Rev Lett; 2020 Jan; 124(4):043603. PubMed ID: 32058765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective protected state preparation of coupled dissipative quantum emitters.
    Plankensteiner D; Ostermann L; Ritsch H; Genes C
    Sci Rep; 2015 Nov; 5():16231. PubMed ID: 26549501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subradiance in a Large Cloud of Cold Atoms.
    Guerin W; Araújo MO; Kaiser R
    Phys Rev Lett; 2016 Feb; 116(8):083601. PubMed ID: 26967415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.