These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 28949579)

  • 1. Subcritical Thermal Convection of Liquid Metals in a Rapidly Rotating Sphere.
    Kaplan EJ; Schaeffer N; Vidal J; Cardin P
    Phys Rev Lett; 2017 Sep; 119(9):094501. PubMed ID: 28949579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat transport in the geostrophic regime of rotating Rayleigh-Bénard convection.
    Ecke RE; Niemela JJ
    Phys Rev Lett; 2014 Sep; 113(11):114301. PubMed ID: 25259983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Turbulent convection in liquid metal with and without rotation.
    King EM; Aurnou JM
    Proc Natl Acad Sci U S A; 2013 Apr; 110(17):6688-93. PubMed ID: 23569262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh-Bénard convection.
    Zhong JQ; Stevens RJ; Clercx HJ; Verzicco R; Lohse D; Ahlers G
    Phys Rev Lett; 2009 Jan; 102(4):044502. PubMed ID: 19257426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle image velocimetry measurement of the velocity field in turbulent thermal convection.
    Xia KQ; Sun C; Zhou SQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066303. PubMed ID: 14754311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultimate-state scaling in a shell model for homogeneous turbulent convection.
    Ching ES; Ko TC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036309. PubMed ID: 18851145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Elbert range of magnetostrophic convection. I. Linear theory.
    Horn S; Aurnou JM
    Proc Math Phys Eng Sci; 2022 Aug; 478(2264):20220313. PubMed ID: 35966215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat transport in rotating convection without Ekman layers.
    Schmitz S; Tilgner A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):015305. PubMed ID: 19658763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competition between Ekman Plumes and Vortex Condensates in Rapidly Rotating Thermal Convection.
    Aguirre Guzmán AJ; Madonia M; Cheng JS; Ostilla-Mónico R; Clercx HJH; Kunnen RPJ
    Phys Rev Lett; 2020 Nov; 125(21):214501. PubMed ID: 33274985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boundary Zonal Flow in Rotating Turbulent Rayleigh-Bénard Convection.
    Zhang X; van Gils DPM; Horn S; Wedi M; Zwirner L; Ahlers G; Ecke RE; Weiss S; Bodenschatz E; Shishkina O
    Phys Rev Lett; 2020 Feb; 124(8):084505. PubMed ID: 32167333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rayleigh-Bénard convection with rotation at small Prandtl numbers.
    Bajaj KM; Ahlers G; Pesch W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056309. PubMed ID: 12059705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convection-driven kinematic dynamos at low Rossby and magnetic Prandtl numbers: Single mode solutions.
    Calkins MA; Julien K; Tobias SM; Aurnou JM; Marti P
    Phys Rev E; 2016 Feb; 93(2):023115. PubMed ID: 26986421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat-transport enhancement in rotating turbulent Rayleigh-Bénard convection.
    Weiss S; Wei P; Ahlers G
    Phys Rev E; 2016 Apr; 93():043102. PubMed ID: 27176385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transitions in overstable rotating magnetoconvection.
    Banerjee A; Ghosh M; Pal P
    Phys Rev E; 2020 Jul; 102(1-1):013107. PubMed ID: 32795050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plumes and waves in two-dimensional turbulent thermal convection.
    Vincent AP; Yuen DA
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):2957-63. PubMed ID: 11970101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced enstrophy generation for turbulent convection in low-Prandtl-number fluids.
    Schumacher J; Götzfried P; Scheel JD
    Proc Natl Acad Sci U S A; 2015 Aug; 112(31):9530-5. PubMed ID: 26195793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal Rossby waves in a rotating annulus. Their stability.
    Pino D; Net M; Sánchez J; Mercader I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056312. PubMed ID: 11415011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat transport in low-Rossby-number Rayleigh-Bénard convection.
    Julien K; Knobloch E; Rubio AM; Vasil GM
    Phys Rev Lett; 2012 Dec; 109(25):254503. PubMed ID: 23368470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Approaching the asymptotic regime of rapidly rotating convection: boundary layers versus interior dynamics.
    Stellmach S; Lischper M; Julien K; Vasil G; Cheng JS; Ribeiro A; King EM; Aurnou JM
    Phys Rev Lett; 2014 Dec; 113(25):254501. PubMed ID: 25554884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Turbulence in rotating Rayleigh-Bénard convection in low-Prandtl-number fluids.
    Pharasi HK; Kannan R; Kumar K; Bhattacharjee JK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):047301. PubMed ID: 22181319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.