These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 28949647)

  • 1. Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas.
    Hu SX
    Phys Rev Lett; 2017 Aug; 119(6):065001. PubMed ID: 28949647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the intrinsic atomic physics behind x-ray absorption line shifts in warm dense silicon plasmas.
    Karasiev VV; Hu SX
    Phys Rev E; 2021 Mar; 103(3-1):033202. PubMed ID: 33862735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Density functional theory calculations of continuum lowering in strongly coupled plasmas.
    Vinko SM; Ciricosta O; Wark JS
    Nat Commun; 2014 Mar; 5():3533. PubMed ID: 24662936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionization potential depression and Pauli blocking in degenerate plasmas at extreme densities.
    Röpke G; Blaschke D; Döppner T; Lin C; Kraeft WD; Redmer R; Reinholz H
    Phys Rev E; 2019 Mar; 99(3-1):033201. PubMed ID: 30999524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partial ionization in dense plasmas: comparisons among average-atom density functional models.
    Murillo MS; Weisheit J; Hansen SB; Dharma-wardana MW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):063113. PubMed ID: 23848795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comment on "Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas".
    Iglesias CA; Sterne PA
    Phys Rev Lett; 2018 Mar; 120(11):119501. PubMed ID: 29601771
    [No Abstract]   [Full Text] [Related]  

  • 7. Hydrodynamic theory for ion structure and stopping power in quantum plasmas.
    Shukla PK; Akbari-Moghanjoughi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043106. PubMed ID: 23679529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variational theory of average-atom and superconfigurations in quantum plasmas.
    Blenski T; Cichocki B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056402. PubMed ID: 17677177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurements of continuum lowering in solid-density plasmas created from elements and compounds.
    Ciricosta O; Vinko SM; Barbrel B; Rackstraw DS; Preston TR; Burian T; Chalupský J; Cho BI; Chung HK; Dakovski GL; Engelhorn K; Hájková V; Heimann P; Holmes M; Juha L; Krzywinski J; Lee RW; Toleikis S; Turner JJ; Zastrau U; Wark JS
    Nat Commun; 2016 May; 7():11713. PubMed ID: 27210741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic theory molecular dynamics and hot dense matter: theoretical foundations.
    Graziani FR; Bauer JD; Murillo MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033104. PubMed ID: 25314544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasma environmental effects in the atomic structure for simulating x-ray free-electron-laser-heated solid-density matter.
    Jin R; Jurek Z; Santra R; Son SK
    Phys Rev E; 2022 Jul; 106(1-2):015206. PubMed ID: 35974549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonideal effect of free electrons on ionization equilibrium and radiative property in dense plasmas.
    Zeng J; Li Y; Hou Y; Yuan J
    Phys Rev E; 2023 Mar; 107(3):L033201. PubMed ID: 37072979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultracold neutral plasmas.
    Lyon M; Rolston SL
    Rep Prog Phys; 2017 Jan; 80(1):017001. PubMed ID: 27852983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo approach to calculate ionization dynamics of hot solid-density plasmas within particle-in-cell simulations.
    Wu D; He XT; Yu W; Fritzsche S
    Phys Rev E; 2017 Feb; 95(2-1):023208. PubMed ID: 28297947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications.
    Hu SX; Collins LA; Boehly TR; Kress JD; Goncharov VN; Skupsky S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043105. PubMed ID: 24827353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Average-atom calculations of bound-free and free-free cross sections in dense plasmas.
    Johnson WR; Nilsen J
    Phys Rev E; 2020 Oct; 102(4-1):043209. PubMed ID: 33212725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications.
    Hu SX; Collins LA; Goncharov VN; Boehly TR; Epstein R; McCrory RL; Skupsky S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033111. PubMed ID: 25314551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient ionization potential depression in nonthermal dense plasmas at high x-ray intensity.
    Jin R; Abdullah MM; Jurek Z; Santra R; Son SK
    Phys Rev E; 2021 Feb; 103(2-1):023203. PubMed ID: 33735970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionization rate coefficients in warm dense plasmas.
    Aslanyan V; Tallents GJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):063106. PubMed ID: 26172807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.