These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 28949727)

  • 1. Nanoconfinement in Slit Pores Enhances Water Self-Dissociation.
    Muñoz-Santiburcio D; Marx D
    Phys Rev Lett; 2017 Aug; 119(5):056002. PubMed ID: 28949727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anisotropic pressure effects on nanoconfined water within narrow graphene slit pores.
    Ruiz-Barragan S; Forbert H; Marx D
    Phys Chem Chem Phys; 2023 Oct; 25(41):28119-28129. PubMed ID: 37818616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoconfinement effects on hydrated excess protons in layered materials.
    Muñoz-Santiburcio D; Wittekindt C; Marx D
    Nat Commun; 2013; 4():2349. PubMed ID: 23949229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying anisotropic dielectric response properties of nanoconfined water within graphene slit pores.
    Ruiz-Barragan S; Muñoz-Santiburcio D; Körning S; Marx D
    Phys Chem Chem Phys; 2020 May; 22(19):10833-10837. PubMed ID: 32393927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoconfined Water within Graphene Slit Pores Adopts Distinct Confinement-Dependent Regimes.
    Ruiz-Barragan S; Muñoz-Santiburcio D; Marx D
    J Phys Chem Lett; 2019 Feb; 10(3):329-334. PubMed ID: 30571135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Confinement-Controlled Aqueous Chemistry within Nanometric Slit Pores.
    Muñoz-Santiburcio D; Marx D
    Chem Rev; 2021 Jun; 121(11):6293-6320. PubMed ID: 34006106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dielectric response of polar liquids in narrow slit pores.
    Froltsov VA; Klapp SH
    J Chem Phys; 2007 Mar; 126(11):114703. PubMed ID: 17381224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact range for smooth wall-liquid interactions in nanoconfined liquids.
    Ingebrigtsen TS; Dyre JC
    Soft Matter; 2014 Jun; 10(24):4324-31. PubMed ID: 24791276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DFT-D2 simulations of water adsorption and dissociation on the low-index surfaces of mackinawite (FeS).
    Dzade NY; Roldan A; de Leeuw NH
    J Chem Phys; 2016 May; 144(17):174704. PubMed ID: 27155644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isomorphs in nanoconfined liquids.
    Carter BMGD; Royall CP; Dyre JC; Ingebrigtsen TS
    Soft Matter; 2021 Oct; 17(38):8662-8677. PubMed ID: 34515711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous dielectric behavior of nanoconfined electrolytic solutions.
    Zhu H; Ghoufi A; Szymczyk A; Balannec B; Morineau D
    Phys Rev Lett; 2012 Sep; 109(10):107801. PubMed ID: 23005328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water Self-Dissociation is Insensitive to Nanoscale Environments.
    Di Pino S; Perez Sirkin YA; Morzan UN; Sánchez VM; Hassanali A; Scherlis DA
    Angew Chem Int Ed Engl; 2023 Aug; 62(34):e202306526. PubMed ID: 37379226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diels-Alder Reactions in Water Are Determined by Microsolvation.
    Pestana LR; Hao H; Head-Gordon T
    Nano Lett; 2020 Jan; 20(1):606-611. PubMed ID: 31771330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of water-wall interaction potential on the properties of nanoconfined water.
    Kumar P; Starr FW; Buldyrev SV; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011202. PubMed ID: 17358138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoconfined Fluids: Uniqueness of Water Compared to Other Liquids.
    Leoni F; Calero C; Franzese G
    ACS Nano; 2021 Dec; 15(12):19864-19876. PubMed ID: 34807577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the molecular origin of high-pressure effects in nanoconfinement: the role of surface chemistry and roughness.
    Long Y; Palmer JC; Coasne B; Śliwinska-Bartkowiak M; Jackson G; Müller EA; Gubbins KE
    J Chem Phys; 2013 Oct; 139(14):144701. PubMed ID: 24116635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-Dimensional Confinement Inhibits Water Dissociation in Carbon Nanotubes.
    Sirkin YAP; Hassanali A; Scherlis DA
    J Phys Chem Lett; 2018 Sep; 9(17):5029-5033. PubMed ID: 30113846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formic and acetic acid p
    Sit I; Fashina BT; Baldo AP; Leung K; Grassian VH; Ilgen AG
    RSC Adv; 2023 Jul; 13(33):23147-23157. PubMed ID: 37533784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universal and Nonuniversal Aspects of Electrostatics in Aqueous Nanoconfinement.
    Loche P; Ayaz C; Wolde-Kidan A; Schlaich A; Netz RR
    J Phys Chem B; 2020 May; 124(21):4365-4371. PubMed ID: 32364728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface polarization enhances ionic transport and correlations in electrolyte solutions nanoconfined by conductors.
    Jiménez-Ángeles F; Ehlen A; Olvera de la Cruz M
    Faraday Discuss; 2023 Oct; 246(0):576-591. PubMed ID: 37450272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.