These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
27. Pattern formation in chemically interacting active rotors with self-propulsion. Liebchen B; Cates ME; Marenduzzo D Soft Matter; 2016 Sep; 12(35):7259-64. PubMed ID: 27526180 [TBL] [Abstract][Full Text] [Related]
28. On effective temperature in network models of collective behavior. Porfiri M; Ariel G Chaos; 2016 Apr; 26(4):043109. PubMed ID: 27131488 [TBL] [Abstract][Full Text] [Related]
29. Collective Motion and Pattern Formation in Phase-Synchronizing Active Fluids. Chakrabarti B; Shelley MJ; Fürthauer S Phys Rev Lett; 2023 Mar; 130(12):128202. PubMed ID: 37027863 [TBL] [Abstract][Full Text] [Related]
30. Large-Scale Patterns in a Minimal Cognitive Flocking Model: Incidental Leaders, Nematic Patterns, and Aggregates. Barberis L; Peruani F Phys Rev Lett; 2016 Dec; 117(24):248001. PubMed ID: 28009185 [TBL] [Abstract][Full Text] [Related]
31. Emergence of collective dynamical chirality for achiral active particles. Jiang H; Ding H; Pu M; Hou Z Soft Matter; 2017 Jan; 13(4):836-841. PubMed ID: 28067390 [TBL] [Abstract][Full Text] [Related]
32. Nature of the order-disorder transition in the Vicsek model for the collective motion of self-propelled particles. Baglietto G; Albano EV Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):050103. PubMed ID: 20364937 [TBL] [Abstract][Full Text] [Related]
33. From phase to microphase separation in flocking models: the essential role of nonequilibrium fluctuations. Solon AP; Chaté H; Tailleur J Phys Rev Lett; 2015 Feb; 114(6):068101. PubMed ID: 25723246 [TBL] [Abstract][Full Text] [Related]
34. Collective dynamics in systems of active Brownian particles with dissipative interactions. Lobaskin V; Romenskyy M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052135. PubMed ID: 23767515 [TBL] [Abstract][Full Text] [Related]
35. Pattern formation and phase transition in the collective dynamics of a binary mixture of polar self-propelled particles. Adhikary S; Santra SB Phys Rev E; 2022 Jun; 105(6-1):064612. PubMed ID: 35854615 [TBL] [Abstract][Full Text] [Related]
36. First-order phase transition in a model of self-propelled particles with variable angular range of interaction. Durve M; Sayeed A Phys Rev E; 2016 May; 93(5):052115. PubMed ID: 27300838 [TBL] [Abstract][Full Text] [Related]
37. Active particle condensation by non-reciprocal and time-delayed interactions. Durve M; Saha A; Sayeed A Eur Phys J E Soft Matter; 2018 Apr; 41(4):49. PubMed ID: 29626264 [TBL] [Abstract][Full Text] [Related]
38. Keeping speed and distance for aligned motion. Farkas IJ; Kun J; Jin Y; He G; Xu M Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012807. PubMed ID: 25679657 [TBL] [Abstract][Full Text] [Related]
39. Contrarian compulsions produce exotic time-dependent flocking of active particles. Bonilla LL; Trenado C Phys Rev E; 2019 Jan; 99(1-1):012612. PubMed ID: 30780289 [TBL] [Abstract][Full Text] [Related]
40. Synchronous and Fully Steerable Active Particle Systems for Enhanced Mimicking of Collective Motion in Nature. Chen Z; Ding H; Kollipara PS; Li J; Zheng Y Adv Mater; 2024 Feb; 36(7):e2304759. PubMed ID: 37572374 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]