BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 28949764)

  • 1. Comparison of heavy metal phytoremediation in monoculture and intercropping systems of Phyllostachys praecox and Sedum plumbizincicola in polluted soil.
    Bian F; Zhong Z; Wu S; Zhang X; Yang C; Xiong X
    Int J Phytoremediation; 2018 Apr; 20(5):490-498. PubMed ID: 28949764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremediation potential of moso bamboo (Phyllostachys pubescens) intercropped with Sedum plumbizincicola in metal-contaminated soil.
    Bian F; Zhong Z; Zhang X; Yang C
    Environ Sci Pollut Res Int; 2017 Dec; 24(35):27244-27253. PubMed ID: 28965200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoremediation potential of wheat intercropped with different densities of Sedum plumbizincicola in soil contaminated with cadmium and zinc.
    Zou J; Song F; Lu Y; Zhuge Y; Niu Y; Lou Y; Pan H; Zhang P; Pang L
    Chemosphere; 2021 Aug; 276():130223. PubMed ID: 34088099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intercropping improves heavy metal phytoremediation efficiency through changing properties of rhizosphere soil in bamboo plantation.
    Bian F; Zhong Z; Li C; Zhang X; Gu L; Huang Z; Gai X; Huang Z
    J Hazard Mater; 2021 Aug; 416():125898. PubMed ID: 34492836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.
    Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H
    J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effects of intercropping Sedum plumbizincicola in wheat growth season under wheat-rice rotation on the crops growth and their heavy metals uptake from different soil types].
    Zhao B; Shen LB; Cheng MM; Wang SF; Wu LH; Zhou SB; Luo YM
    Ying Yong Sheng Tai Xue Bao; 2011 Oct; 22(10):2725-31. PubMed ID: 22263481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of metal-tolerant plant growth-promoting yeast (Cryptococcus sp. NSE1) and its influence on Cd hyperaccumulator Sedum plumbizincicola.
    Liu W; Wang B; Wang Q; Hou J; Wu L; Wood JL; Luo Y; Franks AE
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18621-9. PubMed ID: 27306207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term field phytoextraction of zinc/cadmium contaminated soil by Sedum plumbizincicola under different agronomic strategies.
    Deng L; Li Z; Wang J; Liu H; Li N; Wu L; Hu P; Luo Y; Christie P
    Int J Phytoremediation; 2016; 18(2):134-40. PubMed ID: 26445166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dispose waste liquor of fresh biomass of a hyperaccumulator
    Hu P; Du Y; Yang Y; Li Z; Luo Y; Wu L
    Int J Phytoremediation; 2022; 24(1):1-11. PubMed ID: 34004122
    [No Abstract]   [Full Text] [Related]  

  • 10. [Strengthening the effect of
    Deng YQ; Cao XY; Tan CY; Sun LJ; Peng X; Bai J; Huang SP
    Ying Yong Sheng Tai Xue Bao; 2020 Sep; 31(9):3111-3118. PubMed ID: 33345513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cadmium uptake and transfer by
    Xue Z; Wu M; Hu H; Kianpoor Kalkhajeh Y
    Int J Phytoremediation; 2021; 23(10):1052-1060. PubMed ID: 33491471
    [No Abstract]   [Full Text] [Related]  

  • 12. A meta-analysis about the accumulation of heavy metals uptake by
    Song W; Wang J; Zhai L; Ge L; Hao S; Shi L; Lian C; Chen C; Shen Z; Chen Y
    Int J Phytoremediation; 2022; 24(7):744-752. PubMed ID: 34493098
    [No Abstract]   [Full Text] [Related]  

  • 13. Phytoextraction of heavy metal polluted soils using Sedum plumbizincicola inoculated with metal mobilizing Phyllobacterium myrsinacearum RC6b.
    Ma Y; Rajkumar M; Luo Y; Freitas H
    Chemosphere; 2013 Oct; 93(7):1386-92. PubMed ID: 23890964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effects of Different Kinds of Organic Materials on Soil Heavy Metal Phytoremediation Efficiency by Sedum alfredii Hance].
    Yao GH; Xu HZ; Zhu LG; Ma JW; Liu D; Ye ZQ
    Huan Jing Ke Xue; 2015 Nov; 36(11):4268-76. PubMed ID: 26911018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of planting densities on yields and zinc and cadmium uptake by Sedum plumbizincicola].
    Liu L; Wu LH; Li N; Cui LQ; Li Z; Jiang JP; Jiang YG; Qiu XY; Luo YM
    Huan Jing Ke Xue; 2009 Nov; 30(11):3422-6. PubMed ID: 20063765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency of repeated phytoextraction of cadmium and zinc from an agricultural soil contaminated with sewage sludge.
    Luo K; Ma T; Liu H; Wu L; Ren J; Nai F; Li R; Chen L; Luo Y; Christie P
    Int J Phytoremediation; 2015; 17(1-6):575-82. PubMed ID: 25747245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bamboo - An untapped plant resource for the phytoremediation of heavy metal contaminated soils.
    Bian F; Zhong Z; Zhang X; Yang C; Gai X
    Chemosphere; 2020 May; 246():125750. PubMed ID: 31891850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of four endophytic bacteria on cadmium speciation and remediation efficiency of Sedum plumbizincicola in farmland soil.
    Cheng X; Cao X; Tan C; Liu L; Bai J; Liang Y; Cai R
    Environ Sci Pollut Res Int; 2022 Dec; 29(59):89557-89569. PubMed ID: 35852747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cadmium levels and soil pH drive structure and function differentiation of endophytic bacterial communities in Sedum plumbizincicola: A field study.
    Zhang J; Na M; Wang Y; Ge W; Zhou J; Zhou S
    Sci Total Environ; 2024 Feb; 912():168828. PubMed ID: 38029975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoremediation of soil contaminated with cadmium, copper and polychlorinated biphenyls.
    Wu L; Li Z; Han C; Liu L; Teng Y; Sun X; Pan C; Huang Y; Luo Y; Christie P
    Int J Phytoremediation; 2012 Jul; 14(6):570-84. PubMed ID: 22908627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.