These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 28950461)

  • 1. Efficiency versus speed in quantum heat engines: Rigorous constraint from Lieb-Robinson bound.
    Shiraishi N; Tajima H
    Phys Rev E; 2017 Aug; 96(2-1):022138. PubMed ID: 28950461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum engine efficiency bound beyond the second law of thermodynamics.
    Niedenzu W; Mukherjee V; Ghosh A; Kofman AG; Kurizki G
    Nat Commun; 2018 Jan; 9(1):165. PubMed ID: 29323109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universal Trade-Off Relation between Power and Efficiency for Heat Engines.
    Shiraishi N; Saito K; Tasaki H
    Phys Rev Lett; 2016 Nov; 117(19):190601. PubMed ID: 27858428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lieb-Robinson bound and locality for general markovian quantum dynamics.
    Poulin D
    Phys Rev Lett; 2010 May; 104(19):190401. PubMed ID: 20866947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum mechanical bound for efficiency of quantum Otto heat engine.
    Park JM; Lee S; Chun HM; Noh JD
    Phys Rev E; 2019 Jul; 100(1-1):012148. PubMed ID: 31499873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superconducting-like Heat Current: Effective Cancellation of Current-Dissipation Trade-Off by Quantum Coherence.
    Tajima H; Funo K
    Phys Rev Lett; 2021 Nov; 127(19):190604. PubMed ID: 34797134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal finite-time Brownian Carnot engine.
    Frim AG; DeWeese MR
    Phys Rev E; 2022 May; 105(5):L052103. PubMed ID: 35706186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power, Efficiency and Fluctuations in a Quantum Point Contact as Steady-State Thermoelectric Heat Engine.
    Kheradsoud S; Dashti N; Misiorny M; Potts PP; Splettstoesser J; Samuelsson P
    Entropy (Basel); 2019 Aug; 21(8):. PubMed ID: 33267490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine.
    Xu YY; Chen B; Liu J
    Phys Rev E; 2018 Feb; 97(2-1):022130. PubMed ID: 29548214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geometric Bound on the Efficiency of Irreversible Thermodynamic Cycles.
    Frim AG; DeWeese MR
    Phys Rev Lett; 2022 Jun; 128(23):230601. PubMed ID: 35749204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carnot cycle at finite power: attainability of maximal efficiency.
    Allahverdyan AE; Hovhannisyan KV; Melkikh AV; Gevorkian SG
    Phys Rev Lett; 2013 Aug; 111(5):050601. PubMed ID: 23952379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficiency of a cyclic quantum heat engine with finite-size baths.
    Mohammady MH; Romito A
    Phys Rev E; 2019 Jul; 100(1-1):012122. PubMed ID: 31499920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal Cycles for Low-Dissipation Heat Engines.
    Abiuso P; Perarnau-Llobet M
    Phys Rev Lett; 2020 Mar; 124(11):110606. PubMed ID: 32242675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence.
    Dorfman KE; Xu D; Cao J
    Phys Rev E; 2018 Apr; 97(4-1):042120. PubMed ID: 29758726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Work extremum principle: structure and function of quantum heat engines.
    Allahverdyan AE; Johal RS; Mahler G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041118. PubMed ID: 18517589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantum-dot heat engine operating close to the thermodynamic efficiency limits.
    Josefsson M; Svilans A; Burke AM; Hoffmann EA; Fahlvik S; Thelander C; Leijnse M; Linke H
    Nat Nanotechnol; 2018 Oct; 13(10):920-924. PubMed ID: 30013221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases.
    Chen L; Meng Z; Ge Y; Wu F
    Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33925622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency at and near maximum power of low-dissipation heat engines.
    Holubec V; Ryabov A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052125. PubMed ID: 26651665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic Uncertainty Relation in Slowly Driven Quantum Heat Engines.
    Miller HJD; Mohammady MH; Perarnau-Llobet M; Guarnieri G
    Phys Rev Lett; 2021 May; 126(21):210603. PubMed ID: 34114847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum dynamical framework for Brownian heat engines.
    Agarwal GS; Chaturvedi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012130. PubMed ID: 23944437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.