These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 28950534)

  • 1. Statistical properties of the anomalous scaling exponent estimator based on time-averaged mean-square displacement.
    Sikora G; Teuerle M; Wyłomańska A; Grebenkov D
    Phys Rev E; 2017 Aug; 96(2-1):022132. PubMed ID: 28950534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models.
    Wang W; Metzler R; Cherstvy AG
    Phys Chem Chem Phys; 2022 Aug; 24(31):18482-18504. PubMed ID: 35838015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mean-squared-displacement statistical test for fractional Brownian motion.
    Sikora G; Burnecki K; Wyłomańska A
    Phys Rev E; 2017 Mar; 95(3-1):032110. PubMed ID: 28415337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomalous diffusion and nonergodicity for heterogeneous diffusion processes with fractional Gaussian noise.
    Wang W; Cherstvy AG; Liu X; Metzler R
    Phys Rev E; 2020 Jul; 102(1-1):012146. PubMed ID: 32794926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating the anomalous diffusion exponent for single particle tracking data with measurement errors - An alternative approach.
    Burnecki K; Kepten E; Garini Y; Sikora G; Weron A
    Sci Rep; 2015 Jun; 5():11306. PubMed ID: 26065707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved estimation of anomalous diffusion exponents in single-particle tracking experiments.
    Kepten E; Bronshtein I; Garini Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052713. PubMed ID: 23767572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertia triggers nonergodicity of fractional Brownian motion.
    Cherstvy AG; Wang W; Metzler R; Sokolov IM
    Phys Rev E; 2021 Aug; 104(2-1):024115. PubMed ID: 34525594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometry controlled anomalous diffusion in random fractal geometries: looking beyond the infinite cluster.
    Mardoukhi Y; Jeon JH; Metzler R
    Phys Chem Chem Phys; 2015 Nov; 17(44):30134-47. PubMed ID: 26503611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fractal model of anomalous diffusion.
    Gmachowski L
    Eur Biophys J; 2015 Dec; 44(8):613-21. PubMed ID: 26129728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Testing of Multifractional Brownian Motion.
    Balcerek M; Burnecki K
    Entropy (Basel); 2020 Dec; 22(12):. PubMed ID: 33322676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guidelines for the fitting of anomalous diffusion mean square displacement graphs from single particle tracking experiments.
    Kepten E; Weron A; Sikora G; Burnecki K; Garini Y
    PLoS One; 2015; 10(2):e0117722. PubMed ID: 25680069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinguishing between fractional Brownian motion with random and constant Hurst exponent using sample autocovariance-based statistics.
    Grzesiek A; Gajda J; Thapa S; Wyłomańska A
    Chaos; 2024 Apr; 34(4):. PubMed ID: 38668586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-averaged quadratic functionals of a Gaussian process.
    Grebenkov DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061117. PubMed ID: 21797312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modified periodogram method for estimating the Hurst exponent of fractional Gaussian noise.
    Liu Y; Liu Y; Wang K; Jiang T; Yang L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066207. PubMed ID: 20365254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification.
    Liu SC; Chang S
    IEEE Trans Image Process; 1997; 6(8):1176-84. PubMed ID: 18283005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First passage times for a tracer particle in single file diffusion and fractional Brownian motion.
    Sanders LP; Ambjörnsson T
    J Chem Phys; 2012 May; 136(17):175103. PubMed ID: 22583268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalous subdiffusion in fluorescence photobleaching recovery: a Monte Carlo study.
    Saxton MJ
    Biophys J; 2001 Oct; 81(4):2226-40. PubMed ID: 11566793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractional Brownian motion with random Hurst exponent: Accelerating diffusion and persistence transitions.
    Balcerek M; Burnecki K; Thapa S; Wyłomańska A; Chechkin A
    Chaos; 2022 Sep; 32(9):093114. PubMed ID: 36182362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revealing nonergodic dynamics in living cells from a single particle trajectory.
    Lanoiselée Y; Grebenkov DS
    Phys Rev E; 2016 May; 93(5):052146. PubMed ID: 27300868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling of locally self-similar processes using multifractional Brownian motion of Riemann-Liouville type.
    Muniandy SV; Lim SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):046104. PubMed ID: 11308909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.