These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 28950550)

  • 1. Versatile and efficient pore network extraction method using marker-based watershed segmentation.
    Gostick JT
    Phys Rev E; 2017 Aug; 96(2-1):023307. PubMed ID: 28950550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single- and two-phase flow simulation based on equivalent pore network extracted from micro-CT images of sandstone core.
    Song R; Liu J; Cui M
    Springerplus; 2016; 5(1):817. PubMed ID: 27390657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine Learning Assisted Prediction of Porosity and Related Properties Using Digital Rock Images.
    Khan MI; Khanal A
    ACS Omega; 2024 Jul; 9(28):30205-30223. PubMed ID: 39035961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore-network extraction from micro-computerized-tomography images.
    Dong H; Blunt MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036307. PubMed ID: 19905212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalized network modeling: Network extraction as a coarse-scale discretization of the void space of porous media.
    Raeini AQ; Bijeljic B; Blunt MJ
    Phys Rev E; 2017 Jul; 96(1-1):013312. PubMed ID: 29347276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pore network model for permeability characterization of three-dimensionally-printed porous materials for passive microfluidics.
    Piovesan A; Achille C; Ameloot R; Nicolai B; Verboven P
    Phys Rev E; 2019 Mar; 99(3-1):033107. PubMed ID: 30999407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional diffusion of non-sorbing species in porous sandstone: computer simulation based on X-ray microtomography using synchrotron radiation.
    Nakashima Y; Nakano T; Nakamura K; Uesugi K; Tsuchiyama A; Ikeda S
    J Contam Hydrol; 2004 Oct; 74(1-4):253-64. PubMed ID: 15358495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of a void network model to correlate porosity, mercury porosimetry, thin section, absolute permeability, and NMR relaxation time data for sandstone rocks.
    Matthews GP; Canonville CF; Moss AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031307. PubMed ID: 16605517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of pore network modeling for determination of two-phase transport in fibrous porous media.
    Huang X; Zhou W; Deng D
    Sci Rep; 2020 Nov; 10(1):20852. PubMed ID: 33257750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description.
    Piri M; Blunt MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026301. PubMed ID: 15783413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective Diffusion in Fibrous Porous Media: A Comparison Study between Lattice Boltzmann and Pore Network Modeling Methods.
    Huang X; Zhou W; Deng D
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33562769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Petrographic characterization to build an accurate rock model using micro-CT: Case study on low-permeable to tight turbidite sandstone from Eocene Shahejie Formation.
    Munawar MJ; Lin C; Cnudde V; Bultreys T; Dong C; Zhang X; De Boever W; Zahid MA; Wu Y
    Micron; 2018 Jun; 109():22-33. PubMed ID: 29614427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An anisotropic pore-network model to estimate the shale gas permeability.
    Zhang D; Zhang X; Guo H; Lin D; Meegoda JN; Hu L
    Sci Rep; 2021 Apr; 11(1):7902. PubMed ID: 33846392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of spatially-resolved porosity, tracer distributions and diffusion coefficients in porous media using MRI measurements and numerical simulations.
    Marica F; Jofré SA; Mayer KU; Balcom BJ; Al TA
    J Contam Hydrol; 2011 Jul; 125(1-4):47-56. PubMed ID: 21669472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inertial forces affect fluid front displacement dynamics in a pore-throat network model.
    Moebius F; Or D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023019. PubMed ID: 25215832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between the Size of the Samples and the Interpretation of the Mercury Intrusion Results of an Artificial Sandstone.
    Dong H; Zhang H; Zuo Y; Gao P; Ye G
    Materials (Basel); 2018 Jan; 11(2):. PubMed ID: 29382067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks.
    Ibragimov B; Xing L
    Med Phys; 2017 Feb; 44(2):547-557. PubMed ID: 28205307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstruction of three-dimensional porous media using a single thin section.
    Tahmasebi P; Sahimi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066709. PubMed ID: 23005245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From computed microtomography images to resistivity index calculations of heterogeneous carbonates using a dual-porosity pore-network approach: influence of percolation on the electrical transport properties.
    Bauer D; Youssef S; Han M; Bekri S; Rosenberg E; Fleury M; Vizika O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011133. PubMed ID: 21867139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effects of Swelling and Porosity Change on Capillarity: DEM Coupled with a Pore-Unit Assembly Method.
    Sweijen T; Nikooee E; Hassanizadeh SM; Chareyre B
    Transp Porous Media; 2016; 113():207-226. PubMed ID: 27471335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.