These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 28950616)
1. Route towards the optimization at given power of thermoelectric heat engines with broken time-reversal symmetry. Zhang R; Li QW; Tang FR; Yang XQ; Bai L Phys Rev E; 2017 Aug; 96(2-1):022133. PubMed ID: 28950616 [TBL] [Abstract][Full Text] [Related]
2. Efficiency Bounds for Minimally Nonlinear Irreversible Heat Engines with Broken Time-Reversal Symmetry. Liu Q; Li W; Zhang M; He J; Wang J Entropy (Basel); 2019 Jul; 21(7):. PubMed ID: 33267431 [TBL] [Abstract][Full Text] [Related]
3. Constitutive relation for nonlinear response and universality of efficiency at maximum power for tight-coupling heat engines. Sheng S; Tu ZC Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022136. PubMed ID: 25768487 [TBL] [Abstract][Full Text] [Related]
4. Efficiency at maximum power of thermally coupled heat engines. Apertet Y; Ouerdane H; Goupil C; Lecoeur P Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041144. PubMed ID: 22680454 [TBL] [Abstract][Full Text] [Related]
5. Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime. Yamamoto K; Hatano N Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042165. PubMed ID: 26565226 [TBL] [Abstract][Full Text] [Related]
6. From local force-flux relationships to internal dissipations and their impact on heat engine performance: the illustrative case of a thermoelectric generator. Apertet Y; Ouerdane H; Goupil C; Lecoeur P Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022137. PubMed ID: 24032805 [TBL] [Abstract][Full Text] [Related]
7. Irreversibilities and efficiency at maximum power of heat engines: the illustrative case of a thermoelectric generator. Apertet Y; Ouerdane H; Goupil C; Lecoeur P Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031116. PubMed ID: 22587047 [TBL] [Abstract][Full Text] [Related]
8. True nature of the Curzon-Ahlborn efficiency. Apertet Y; Ouerdane H; Goupil C; Lecoeur P Phys Rev E; 2017 Aug; 96(2-1):022119. PubMed ID: 28950453 [TBL] [Abstract][Full Text] [Related]
9. Strong bounds on Onsager coefficients and efficiency for three-terminal thermoelectric transport in a magnetic field. Brandner K; Saito K; Seifert U Phys Rev Lett; 2013 Feb; 110(7):070603. PubMed ID: 25166361 [TBL] [Abstract][Full Text] [Related]
10. Efficiency Statistics and Bounds for Systems with Broken Time-Reversal Symmetry. Jiang JH; Agarwalla BK; Segal D Phys Rev Lett; 2015 Jul; 115(4):040601. PubMed ID: 26252673 [TBL] [Abstract][Full Text] [Related]
11. Thermoelectric generator in endoreversible approximation: The effect of heat-transfer law under finite physical dimensions constraint. Kaur J; Johal RS; Feidt M Phys Rev E; 2022 Mar; 105(3-1):034122. PubMed ID: 35428100 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamic bounds on efficiency for systems with broken time-reversal symmetry. Benenti G; Saito K; Casati G Phys Rev Lett; 2011 Jun; 106(23):230602. PubMed ID: 21770492 [TBL] [Abstract][Full Text] [Related]
13. A quantum-dot heat engine operating close to the thermodynamic efficiency limits. Josefsson M; Svilans A; Burke AM; Hoffmann EA; Fahlvik S; Thelander C; Leijnse M; Linke H Nat Nanotechnol; 2018 Oct; 13(10):920-924. PubMed ID: 30013221 [TBL] [Abstract][Full Text] [Related]
14. Efficiency of Harmonic Quantum Otto Engines at Maximal Power. Deffner S Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266599 [TBL] [Abstract][Full Text] [Related]
15. Optimal performance of periodically driven, stochastic heat engines under limited control. Bauer M; Brandner K; Seifert U Phys Rev E; 2016 Apr; 93():042112. PubMed ID: 27176259 [TBL] [Abstract][Full Text] [Related]
16. Efficiency at and near maximum power of low-dissipation heat engines. Holubec V; Ryabov A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052125. PubMed ID: 26651665 [TBL] [Abstract][Full Text] [Related]
17. Microscopic theory of the Curzon-Ahlborn heat engine based on a Brownian particle. Chen YH; Chen JF; Fei Z; Quan HT Phys Rev E; 2022 Aug; 106(2-1):024105. PubMed ID: 36109948 [TBL] [Abstract][Full Text] [Related]
18. Hierarchical Onsager symmetries in adiabatically driven linear irreversible heat engines. Izumida Y Phys Rev E; 2021 May; 103(5):L050101. PubMed ID: 34134349 [TBL] [Abstract][Full Text] [Related]
19. From maximum power to a trade-off optimization of low-dissipation heat engines: Influence of control parameters and the role of entropy generation. Gonzalez-Ayala J; Calvo Hernández A; Roco JM Phys Rev E; 2017 Feb; 95(2-1):022131. PubMed ID: 28297927 [TBL] [Abstract][Full Text] [Related]
20. Endoreversible quantum heat engines in the linear response regime. Wang H; He J; Wang J Phys Rev E; 2017 Jul; 96(1-1):012152. PubMed ID: 29347192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]