These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 28950616)

  • 21. Power, Efficiency and Fluctuations in a Quantum Point Contact as Steady-State Thermoelectric Heat Engine.
    Kheradsoud S; Dashti N; Misiorny M; Potts PP; Splettstoesser J; Samuelsson P
    Entropy (Basel); 2019 Aug; 21(8):. PubMed ID: 33267490
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling and Performance Optimization of an Irreversible Two-Stage Combined Thermal Brownian Heat Engine.
    Qi C; Ding Z; Chen L; Ge Y; Feng H
    Entropy (Basel); 2021 Mar; 23(4):. PubMed ID: 33807398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Brownian heat engine with active reservoirs.
    Lee JS; Park JM; Park H
    Phys Rev E; 2020 Sep; 102(3-1):032116. PubMed ID: 33075980
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Collective working regimes for coupled heat engines.
    Jiménez de Cisneros B; Hernández AC
    Phys Rev Lett; 2007 Mar; 98(13):130602. PubMed ID: 17501176
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental study of the potential for thermal energy recovery with thermoelectric devices in low displacement diesel engines.
    Ramírez-Restrepo R; Sagastume-Gutiérrez A; Cabello-Eras J; Hernández B; Duarte-Forero J
    Heliyon; 2021 Nov; 7(11):e08273. PubMed ID: 34765787
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimal low symmetric dissipation Carnot engines and refrigerators.
    de Tomás C; Hernández AC; Roco JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):010104. PubMed ID: 22400500
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficiencies and coefficients of performance of heat engines, refrigerators, and heat pumps with friction: a universal limiting behavior.
    Bizarro JP; Rodrigues P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051109. PubMed ID: 23214740
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimization Criteria and Efficiency of a Thermoelectric Generator.
    Juárez-Huerta VH; Sánchez-Salas N; Chimal-Eguía JC
    Entropy (Basel); 2022 Dec; 24(12):. PubMed ID: 36554217
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cost-efficiency trade-off and the design of thermoelectric power generators.
    Yazawa K; Shakouri A
    Environ Sci Technol; 2011 Sep; 45(17):7548-53. PubMed ID: 21793542
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Finite-power performance of quantum heat engines in linear response.
    Liu Q; He J; Ma Y; Wang J
    Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative Performance Analysis of a Simplified Curzon-Ahlborn Engine.
    Páez-Hernández RT; Chimal-Eguía JC; Ladino-Luna D; Velázquez-Arcos JM
    Entropy (Basel); 2018 Aug; 20(9):. PubMed ID: 33265726
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Linear and nonlinear thermodynamics of a kinetic heat engine with fast transformations.
    Cerino L; Puglisi A; Vulpiani A
    Phys Rev E; 2016 Apr; 93():042116. PubMed ID: 27176263
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The equivalence of minimum entropy production and maximum thermal efficiency in endoreversible heat engines.
    Haseli Y
    Heliyon; 2016 May; 2(5):e00113. PubMed ID: 27441284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimization Modeling of Irreversible Carnot Engine from the Perspective of Combining Finite Speed and Finite Time Analysis.
    Costea M; Petrescu S; Feidt M; Dobre C; Borcila B
    Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33922290
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Irreversible entropy production in low- and high-dissipation heat engines and the problem of the Curzon-Ahlborn efficiency.
    Gerstenmaier YC
    Phys Rev E; 2021 Mar; 103(3-1):032141. PubMed ID: 33862798
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Work extremum principle: structure and function of quantum heat engines.
    Allahverdyan AE; Johal RS; Mahler G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041118. PubMed ID: 18517589
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficiency at maximum power output of quantum heat engines under finite-time operation.
    Wang J; He J; Wu Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031145. PubMed ID: 22587076
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Universal Trade-Off Relation between Power and Efficiency for Heat Engines.
    Shiraishi N; Saito K; Tasaki H
    Phys Rev Lett; 2016 Nov; 117(19):190601. PubMed ID: 27858428
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Universal Bounds on Fluctuations in Continuous Thermal Machines.
    Saryal S; Gerry M; Khait I; Segal D; Agarwalla BK
    Phys Rev Lett; 2021 Nov; 127(19):190603. PubMed ID: 34797144
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Maximum Efficient Power Performance Analysis and Multi-Objective Optimization of Two-Stage Thermoelectric Generators.
    Tian L; Chen L; Ge Y; Shi S
    Entropy (Basel); 2022 Oct; 24(10):. PubMed ID: 37420463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.