These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28950627)

  • 1. Scattering of biflagellate microswimmers from surfaces.
    Lushi E; Kantsler V; Goldstein RE
    Phys Rev E; 2017 Aug; 96(2-1):023102. PubMed ID: 28950627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The orientation of swimming biflagellates in shear flows.
    O'Malley S; Bees MA
    Bull Math Biol; 2012 Jan; 74(1):232-55. PubMed ID: 21744179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective viscosity of a suspension of flagellar-beating microswimmers: Three-dimensional modeling.
    Jibuti L; Zimmermann W; Rafaï S; Peyla P
    Phys Rev E; 2017 Nov; 96(5-1):052610. PubMed ID: 29347779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Random walk of a swimmer in a low-Reynolds-number medium.
    Garcia M; Berti S; Peyla P; Rafaï S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):035301. PubMed ID: 21517551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flagellated microswimmers: Hydrodynamics in thin liquid films.
    Pimponi D; Chinappi M; Gualtieri P
    Eur Phys J E Soft Matter; 2018 Feb; 41(2):28. PubMed ID: 29488023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microalgae Scatter off Solid Surfaces by Hydrodynamic and Contact Forces.
    Contino M; Lushi E; Tuval I; Kantsler V; Polin M
    Phys Rev Lett; 2015 Dec; 115(25):258102. PubMed ID: 26722946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flagellar swimming in viscoelastic fluids: role of fluid elastic stress revealed by simulations based on experimental data.
    Li C; Qin B; Gopinath A; Arratia PE; Thomases B; Guy RD
    J R Soc Interface; 2017 Oct; 14(135):. PubMed ID: 28978746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetry and stability of shape kinematics in microswimmers' motion.
    Or Y
    Phys Rev Lett; 2012 Jun; 108(25):258101. PubMed ID: 23004662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axonemal motility in Chlamydomonas.
    Wakabayashi K; Kamiya R
    Methods Cell Biol; 2015; 127():387-402. PubMed ID: 25837401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of Helical Navigation by Three-Dimensional Flagellar Beating.
    Cortese D; Wan KY
    Phys Rev Lett; 2021 Feb; 126(8):088003. PubMed ID: 33709750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flagellar waveform dynamics of freely swimming algal cells.
    Kurtuldu H; Tam D; Hosoi AE; Johnson KA; Gollub JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013015. PubMed ID: 23944557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resistive force theory and wave dynamics in swimming flagellar apparatus isolated from
    Goli Pozveh S; Bae AJ; Gholami A
    Soft Matter; 2021 Feb; 17(6):1601-1613. PubMed ID: 33355581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emergence of synchronized beating during the regrowth of eukaryotic flagella.
    Goldstein RE; Polin M; Tuval I
    Phys Rev Lett; 2011 Sep; 107(14):148103. PubMed ID: 22107238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamics Versus Intracellular Coupling in the Synchronization of Eukaryotic Flagella.
    Quaranta G; Aubin-Tam ME; Tam D
    Phys Rev Lett; 2015 Dec; 115(23):238101. PubMed ID: 26684142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antiphase synchronization in a flagellar-dominance mutant of Chlamydomonas.
    Leptos KC; Wan KY; Polin M; Tuval I; Pesci AI; Goldstein RE
    Phys Rev Lett; 2013 Oct; 111(15):158101. PubMed ID: 24160630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wall entrapment of peritrichous bacteria: a mesoscale hydrodynamics simulation study.
    Mousavi SM; Gompper G; Winkler RG
    Soft Matter; 2020 May; 16(20):4866-4875. PubMed ID: 32424390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative high-throughput assays for flagella-based motility in chlamydomonas using plate-well image analysis and transmission correlation spectroscopy.
    Marshall WF
    J Biomol Screen; 2009 Feb; 14(2):133-41. PubMed ID: 19196701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhythmicity, recurrence, and recovery of flagellar beating.
    Wan KY; Goldstein RE
    Phys Rev Lett; 2014 Dec; 113(23):238103. PubMed ID: 25526162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flagella-generated forces reveal gear-type motor in single cells of the green alga, Chlamydomonas reinhardtii.
    D'Souza JS; Gudipati M; Dharmadhikari JA; Dharmadhikari AK; Kashyap A; Sivaramakrishnan M; Rao U; Mathur D; Rao BJ
    Biochem Biophys Res Commun; 2009 Mar; 380(2):266-70. PubMed ID: 19167361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autonomously responsive pumping by a bacterial flagellar forest: A mean-field approach.
    Martindale JD; Fu HC
    Phys Rev E; 2017 Sep; 96(3-1):033107. PubMed ID: 29346873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.