These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 28950642)

  • 1. Robustness and versatility of a nonlinear interdependence method for directional coupling detection from spike trains.
    Malvestio I; Kreuz T; Andrzejak RG
    Phys Rev E; 2017 Aug; 96(2-1):022203. PubMed ID: 28950642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring spike timing distance in the Hindmarsh-Rose neurons.
    Zhu J; Liu X
    Cogn Neurodyn; 2018 Apr; 12(2):225-234. PubMed ID: 29564030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons.
    Jackson BS
    Neural Comput; 2004 Oct; 16(10):2125-95. PubMed ID: 15333210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic optimal control of single neuron spike trains.
    Iolov A; Ditlevsen S; Longtin A
    J Neural Eng; 2014 Aug; 11(4):046004. PubMed ID: 24891497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of underlying nonlinear deterministic dynamics embedded in noisy spike trains.
    Asai Y; Villa AE
    J Biol Phys; 2008 Aug; 34(3-4):325-40. PubMed ID: 19669481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Information theoretic analysis of dynamical encoding by four identified primary sensory interneurons in the cricket cercal system.
    Theunissen F; Roddey JC; Stufflebeam S; Clague H; Miller JP
    J Neurophysiol; 1996 Apr; 75(4):1345-64. PubMed ID: 8727382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The time-rescaling theorem and its application to neural spike train data analysis.
    Brown EN; Barbieri R; Ventura V; Kass RE; Frank LM
    Neural Comput; 2002 Feb; 14(2):325-46. PubMed ID: 11802915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the robustness of EC-PC spike detection method for online neural recording.
    Zhou Y; Wu T; Rastegarnia A; Guan C; Keefer E; Yang Z
    J Neurosci Methods; 2014 Sep; 235():316-30. PubMed ID: 25088692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the causality between spike trains with permutation conditional mutual information.
    Li Z; Ouyang G; Li D; Li X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021929. PubMed ID: 21929040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the dynamics of chaotic spiking-bursting transition in the Hindmarsh-Rose neuron.
    Innocenti G; Genesio R
    Chaos; 2009 Jun; 19(2):023124. PubMed ID: 19566259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting single spikes and spike patterns with the Hindmarsh-Rose model.
    de Lange E; Hasler M
    Biol Cybern; 2008 Nov; 99(4-5):349-60. PubMed ID: 19011923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring spike train synchrony.
    Kreuz T; Haas JS; Morelli A; Abarbanel HD; Politi A
    J Neurosci Methods; 2007 Sep; 165(1):151-61. PubMed ID: 17628690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of weak directional coupling: phase-dynamics approach versus state-space approach.
    Smirnov DA; Andrzejak RG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036207. PubMed ID: 15903546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of spatiotemporally correlated spike trains and local field potentials using a multivariate autoregressive process.
    Gutnisky DA; Josić K
    J Neurophysiol; 2010 May; 103(5):2912-30. PubMed ID: 20032244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An artificial chaotic spiking neuron inspired by spiral ganglion cell: paralleled spike encoding, theoretical analysis, and electronic circuit implementation.
    Torikai H; Nishigami T
    Neural Netw; 2009; 22(5-6):664-73. PubMed ID: 19595567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Representing spike trains using constant sampling intervals.
    Hirata Y; Aihara K
    J Neurosci Methods; 2009 Oct; 183(2):277-86. PubMed ID: 19583980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains.
    Perkel DH; Gerstein GL; Moore GP
    Biophys J; 1967 Jul; 7(4):419-40. PubMed ID: 4292792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variational Latent Gaussian Process for Recovering Single-Trial Dynamics from Population Spike Trains.
    Zhao Y; Park IM
    Neural Comput; 2017 May; 29(5):1293-1316. PubMed ID: 28333587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revealing cell assemblies at multiple levels of granularity.
    Billeh YN; Schaub MT; Anastassiou CA; Barahona M; Koch C
    J Neurosci Methods; 2014 Oct; 236():92-106. PubMed ID: 25169050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unbiased and robust quantification of synchronization between spikes and local field potential.
    Li Z; Cui D; Li X
    J Neurosci Methods; 2016 Aug; 269():33-8. PubMed ID: 27180930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.