These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1378 related articles for article (PubMed ID: 28950908)
21. α7 Nicotinic Acetylcholine Receptor Signaling Modulates Ovine Fetal Brain Astrocytes Transcriptome in Response to Endotoxin. Cao M; MacDonald JW; Liu HL; Weaver M; Cortes M; Durosier LD; Burns P; Fecteau G; Desrochers A; Schulkin J; Antonelli MC; Bernier RA; Dorschner M; Bammler TK; Frasch MG Front Immunol; 2019; 10():1063. PubMed ID: 31143190 [TBL] [Abstract][Full Text] [Related]
22. A possible role of microglia-derived nitric oxide by lipopolysaccharide in activation of astroglial pentose-phosphate pathway via the Keap1/Nrf2 system. Iizumi T; Takahashi S; Mashima K; Minami K; Izawa Y; Abe T; Hishiki T; Suematsu M; Kajimura M; Suzuki N J Neuroinflammation; 2016 May; 13(1):99. PubMed ID: 27143001 [TBL] [Abstract][Full Text] [Related]
23. Cardioprotective role of GTS-21 by attenuating the TLR4/NF-κB pathway in streptozotocin-induced diabetic cardiomyopathy in rats. Youssef ME; Abdelrazek HM; Moustafa YM Naunyn Schmiedebergs Arch Pharmacol; 2021 Jan; 394(1):11-31. PubMed ID: 32776158 [TBL] [Abstract][Full Text] [Related]
24. Hydrangenol inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-κB pathway and activating the Nrf2-mediated HO-1 pathway. Kim HJ; Kang CH; Jayasooriya RGPT; Dilshara MG; Lee S; Choi YH; Seo YT; Kim GY Int Immunopharmacol; 2016 Jun; 35():61-69. PubMed ID: 27032067 [TBL] [Abstract][Full Text] [Related]
25. Wnt/β-catenin signaling plays an essential role in α7 nicotinic receptor-mediated neuroprotection of dopaminergic neurons in a mouse Parkinson's disease model. Liu Y; Hao S; Yang B; Fan Y; Qin X; Chen Y; Hu J Biochem Pharmacol; 2017 Sep; 140():115-123. PubMed ID: 28551099 [TBL] [Abstract][Full Text] [Related]
26. Nicotine induces the production of IL-1β and IL-8 via the α7 nAChR/NF-κB pathway in human periodontal ligament cells: an in vitro study. Wu L; Zhou Y; Zhou Z; Liu Y; Bai Y; Xing X; Wang X Cell Physiol Biochem; 2014; 34(2):423-31. PubMed ID: 25059554 [TBL] [Abstract][Full Text] [Related]
27. Involvement of the α7-nicotinic acetylcholine receptors in the anti-inflammatory action of the thymulin-related peptide (PAT). Safieh-Garabedian B; Oz M; Bey RM; Shamaa F; Ashoor A; El-Agnaf OM; Saadé NE Neuroscience; 2013 Oct; 250():455-66. PubMed ID: 23880090 [TBL] [Abstract][Full Text] [Related]
28. The microglial α7-acetylcholine nicotinic receptor is a key element in promoting neuroprotection by inducing heme oxygenase-1 via nuclear factor erythroid-2-related factor 2. Parada E; Egea J; Buendia I; Negredo P; Cunha AC; Cardoso S; Soares MP; López MG Antioxid Redox Signal; 2013 Oct; 19(11):1135-48. PubMed ID: 23311871 [TBL] [Abstract][Full Text] [Related]
29. Chronic nicotine treatment decreases LPS signaling through NF-κB and TLR-4 modulation in the hippocampus. Café-Mendes CC; Garay-Malpartida HM; Malta MB; de Sá Lima L; Scavone C; Ferreira ZS; Markus RP; Marcourakis T Neurosci Lett; 2017 Jan; 636():218-224. PubMed ID: 27984197 [TBL] [Abstract][Full Text] [Related]
30. 2,3,4',5-tetrahydroxystilbene-2-O-β-d-glucoside exerts anti-inflammatory effects on lipopolysaccharide-stimulated microglia by inhibiting NF-κB and activating AMPK/Nrf2 pathways. Park SY; Jin ML; Wang Z; Park G; Choi YW Food Chem Toxicol; 2016 Nov; 97():159-167. PubMed ID: 27621050 [TBL] [Abstract][Full Text] [Related]
31. 7-Methoxy-(9H-β-Carbolin-1-il)-(E)-1-Propenoic Acid, a β-Carboline Alkaloid From Eurycoma longifolia, Exhibits Anti-Inflammatory Effects by Activating the Nrf2/Heme Oxygenase-1 Pathway. Nguyen HD; Choo YY; Nguyen TD; Nguyen HN; Chau VM; Lee JH J Cell Biochem; 2016 Mar; 117(3):659-70. PubMed ID: 26291957 [TBL] [Abstract][Full Text] [Related]
32. Glaucocalyxin B Alleviates Lipopolysaccharide-Induced Parkinson's Disease by Inhibiting TLR/NF-κB and Activating Nrf2/HO-1 Pathway. Xu W; Zheng D; Liu Y; Li J; Yang L; Shang X Cell Physiol Biochem; 2017; 44(6):2091-2104. PubMed ID: 29241205 [TBL] [Abstract][Full Text] [Related]
33. Astrocytic α7 Nicotinic Receptor Activation Inhibits Amyloid-β Aggregation by Upregulating Endogenous αB-crystallin through the PI3K/Akt Signaling Pathway. Ren Z; Yang M; Guan Z; Yu W Curr Alzheimer Res; 2019; 16(1):39-48. PubMed ID: 30345917 [TBL] [Abstract][Full Text] [Related]
34. Anti-inflammatory and anti-oxidant mechanisms of an MMP-8 inhibitor in lipoteichoic acid-stimulated rat primary astrocytes: involvement of NF-κB, Nrf2, and PPAR-γ signaling pathways. Lee EJ; Park JS; Lee YY; Kim DY; Kang JL; Kim HS J Neuroinflammation; 2018 Nov; 15(1):326. PubMed ID: 30470240 [TBL] [Abstract][Full Text] [Related]
35. Suppression of neuroinflammation by an allosteric agonist and positive allosteric modulator of the α7 nicotinic acetylcholine receptor GAT107. Mizrachi T; Marsha O; Brusin K; Ben-David Y; Thakur GA; Vaknin-Dembinsky A; Treinin M; Brenner T J Neuroinflammation; 2021 Apr; 18(1):99. PubMed ID: 33902624 [TBL] [Abstract][Full Text] [Related]
37. Mesenchymal stem cell-derived exosomes as a nanotherapeutic agent for amelioration of inflammation-induced astrocyte alterations in mice. Xian P; Hei Y; Wang R; Wang T; Yang J; Li J; Di Z; Liu Z; Baskys A; Liu W; Wu S; Long Q Theranostics; 2019; 9(20):5956-5975. PubMed ID: 31534531 [TBL] [Abstract][Full Text] [Related]
38. Garcinol Attenuates Lipoprotein(a)-Induced Oxidative Stress and Inflammatory Cytokine Production in Ventricular Cardiomyocyte through α7-Nicotinic Acetylcholine Receptor-Mediated Inhibition of the p38 MAPK and NF-κB Signaling Pathways. Chang NC; Yeh CT; Lin YK; Kuo KT; Fong IH; Kounis NG; Hu P; Hung MY Antioxidants (Basel); 2021 Mar; 10(3):. PubMed ID: 33809417 [TBL] [Abstract][Full Text] [Related]
39. Heme-Oxygenase I and PCG-1α Regulate Mitochondrial Biogenesis via Microglial Activation of Alpha7 Nicotinic Acetylcholine Receptors Using PNU282987. Navarro E; Gonzalez-Lafuente L; Pérez-Liébana I; Buendia I; López-Bernardo E; Sánchez-Ramos C; Prieto I; Cuadrado A; Satrustegui J; Cadenas S; Monsalve M; López MG Antioxid Redox Signal; 2017 Jul; 27(2):93-105. PubMed ID: 27554853 [TBL] [Abstract][Full Text] [Related]
40. Tanaka M; Kishimoto Y; Sasaki M; Sato A; Kamiya T; Kondo K; Iida K Oxid Med Cell Longev; 2018; 2018():9364364. PubMed ID: 30533177 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]