These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Elucidating the role of copper in CHO cell energy metabolism using (13)C metabolic flux analysis. Nargund S; Qiu J; Goudar CT Biotechnol Prog; 2015; 31(5):1179-86. PubMed ID: 26097228 [TBL] [Abstract][Full Text] [Related]
3. Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry. Ahn WS; Antoniewicz MR Metab Eng; 2011 Sep; 13(5):598-609. PubMed ID: 21821143 [TBL] [Abstract][Full Text] [Related]
4. Metabolic flux analysis of CHO cells in perfusion culture by metabolite balancing and 2D [13C, 1H] COSY NMR spectroscopy. Goudar C; Biener R; Boisart C; Heidemann R; Piret J; de Graaf A; Konstantinov K Metab Eng; 2010 Mar; 12(2):138-49. PubMed ID: 19896555 [TBL] [Abstract][Full Text] [Related]
5. A single nutrient feed supports both chemically defined NS0 and CHO fed-batch processes: Improved productivity and lactate metabolism. Ma N; Ellet J; Okediadi C; Hermes P; McCormick E; Casnocha S Biotechnol Prog; 2009; 25(5):1353-63. PubMed ID: 19637321 [TBL] [Abstract][Full Text] [Related]
6. Metabolic analysis of antibody producing CHO cells in fed-batch production. Dean J; Reddy P Biotechnol Bioeng; 2013 Jun; 110(6):1735-47. PubMed ID: 23296898 [TBL] [Abstract][Full Text] [Related]
7. Application of Templeton N; Smith KD; McAtee-Pereira AG; Dorai H; Betenbaugh MJ; Lang SE; Young JD Metab Eng; 2017 Sep; 43(Pt B):218-225. PubMed ID: 28122259 [TBL] [Abstract][Full Text] [Related]
8. Improving culture performance and antibody production in CHO cell culture processes by reducing the Warburg effect. Buchsteiner M; Quek LE; Gray P; Nielsen LK Biotechnol Bioeng; 2018 Sep; 115(9):2315-2327. PubMed ID: 29704441 [TBL] [Abstract][Full Text] [Related]
9. Production of butyrate and branched-chain amino acid catabolic byproducts by CHO cells in fed-batch culture enhances their specific productivity. Harrington C; Jacobs M; Bethune Q; Kalomeris T; Hiller GW; Mulukutla BC Biotechnol Bioeng; 2021 Dec; 118(12):4786-4799. PubMed ID: 34569627 [TBL] [Abstract][Full Text] [Related]
10. Conversion of a CHO cell culture process from perfusion to fed-batch technology without altering product quality. Meuwly F; Weber U; Ziegler T; Gervais A; Mastrangeli R; Crisci C; Rossi M; Bernard A; von Stockar U; Kadouri A J Biotechnol; 2006 May; 123(1):106-16. PubMed ID: 16324762 [TBL] [Abstract][Full Text] [Related]
11. Metabolic network reconstruction, growth characterization and 13C-metabolic flux analysis of the extremophile Thermus thermophilus HB8. Swarup A; Lu J; DeWoody KC; Antoniewicz MR Metab Eng; 2014 Jul; 24():173-80. PubMed ID: 24909362 [TBL] [Abstract][Full Text] [Related]
12. Metabolomic profiling of CHO fed-batch growth phases at 10, 100, and 1,000 L. Vodopivec M; Lah L; Narat M; Curk T Biotechnol Bioeng; 2019 Oct; 116(10):2720-2729. PubMed ID: 31184374 [TBL] [Abstract][Full Text] [Related]
13. Preventing pyruvate kinase muscle expression in Chinese hamster ovary cells curbs lactogenic behavior by altering glycolysis, gating pyruvate generation, and increasing pyruvate flux into the TCA cycle. Tang D; Sandoval W; Liu P; Lam C; Snedecor B; Misaghi S Biotechnol Prog; 2021 Sep; 37(5):e3193. PubMed ID: 34288605 [TBL] [Abstract][Full Text] [Related]
14. Bioreactor productivity and media cost comparison for different intensified cell culture processes. Xu S; Gavin J; Jiang R; Chen H Biotechnol Prog; 2017 Jul; 33(4):867-878. PubMed ID: 27977910 [TBL] [Abstract][Full Text] [Related]
15. Metabolic flux analysis of CHO cell metabolism in the late non-growth phase. Sengupta N; Rose ST; Morgan JA Biotechnol Bioeng; 2011 Jan; 108(1):82-92. PubMed ID: 20672285 [TBL] [Abstract][Full Text] [Related]
16. Cell-controlled hybrid perfusion fed-batch CHO cell process provides significant productivity improvement over conventional fed-batch cultures. Hiller GW; Ovalle AM; Gagnon MP; Curran ML; Wang W Biotechnol Bioeng; 2017 Jul; 114(7):1438-1447. PubMed ID: 28128436 [TBL] [Abstract][Full Text] [Related]
17. Inclusion of maintenance energy improves the intracellular flux predictions of CHO. Széliová D; Štor J; Thiel I; Weinguny M; Hanscho M; Lhota G; Borth N; Zanghellini J; Ruckerbauer DE; Rocha I PLoS Comput Biol; 2021 Jun; 17(6):e1009022. PubMed ID: 34115746 [TBL] [Abstract][Full Text] [Related]
18. Characterization of cellular responses and cell lysis to elevated hydrodynamic stress from benchtop perfusion bioreactors. Zhang W; Ran Q; Zhao L; Ye Q; Tan WS Biotechnol J; 2024 Mar; 19(3):e2400063. PubMed ID: 38528344 [TBL] [Abstract][Full Text] [Related]
19. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation. Fan Y; Jimenez Del Val I; Müller C; Wagtberg Sen J; Rasmussen SK; Kontoravdi C; Weilguny D; Andersen MR Biotechnol Bioeng; 2015 Mar; 112(3):521-35. PubMed ID: 25220616 [TBL] [Abstract][Full Text] [Related]
20. Feeding tricarboxylic acid cycle intermediates improves lactate consumption and antibody production in Chinese hamster ovary cell cultures. Zhang X; Jiang R; Lin H; Xu S Biotechnol Prog; 2020 Jul; 36(4):e2975. PubMed ID: 32012447 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]