BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 28951326)

  • 1. Developmental roles of the spontaneous depolarization wave in synaptic network formation in the embryonic brainstem.
    Momose-Sato Y; Sato K
    Neuroscience; 2017 Dec; 365():33-47. PubMed ID: 28951326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical survey of neural circuit formation in the embryonic chick vagal pathway.
    Sato K; Miyakawa N; Momose-Sato Y
    Eur J Neurosci; 2004 Mar; 19(5):1217-25. PubMed ID: 15016080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prenatal exposure to nicotine disrupts synaptic network formation by inhibiting spontaneous correlated wave activity.
    Momose-Sato Y; Sato K
    IBRO Rep; 2020 Dec; 9():14-23. PubMed ID: 32642591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depolarization waves in the embryonic CNS triggered by multiple sensory inputs and spontaneous activity: optical imaging with a voltage-sensitive dye.
    Momose-Sato Y; Mochida H; Sasaki S; Sato K
    Neuroscience; 2003; 116(2):407-23. PubMed ID: 12559096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic physiology in the cochlear nucleus angularis of the chick.
    MacLeod KM; Carr CE
    J Neurophysiol; 2005 May; 93(5):2520-9. PubMed ID: 15615833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of vagal afferent projections circumflex to the obex in the embryonic chick brainstem visualized with voltage-sensitive dye recording.
    Momose-Sato Y; Kinoshita M; Sato K
    Neuroscience; 2007 Aug; 148(1):140-50. PubMed ID: 17629626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical recording of vagal pathway formation in the embryonic brainstem.
    Momose-Sato Y; Sato K
    Auton Neurosci; 2006 Jun; 126-127():39-49. PubMed ID: 16616702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spreading depolarization waves triggered by vagal stimulation in the embryonic chick brain: optical evidence for intercellular communication in the developing central nervous system.
    Momose-Sato Y; Sato K; Mochida H; Yazawa I; Sasaki S; Kamino K
    Neuroscience; 2001; 102(2):245-62. PubMed ID: 11166111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primary vagal projection to the contralateral non-NTS region in the embryonic chick brainstem revealed by optical recording.
    Momose-Sato Y; Sato K
    J Membr Biol; 2005 Nov; 208(2):183-91. PubMed ID: 16645746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of synaptic networks in the mouse vagal pathway revealed by optical mapping with a voltage-sensitive dye.
    Momose-Sato Y; Sato K
    Eur J Neurosci; 2016 Jul; 44(2):1906-18. PubMed ID: 27207499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical imaging of large-scale correlated wave activity in the developing rat CNS.
    Momose-Sato Y; Honda Y; Sasaki H; Sato K
    J Neurophysiol; 2005 Aug; 94(2):1606-22. PubMed ID: 15872071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia recruits a respiratory-related excitatory pathway to brainstem premotor cardiac vagal neurons in animals exposed to prenatal nicotine.
    Evans C; Wang J; Neff R; Mendelowitz D
    Neuroscience; 2005; 133(4):1073-9. PubMed ID: 15964492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophysiological and pharmacological analysis of synaptic inputs to pulmonary rapidly adapting receptor relay neurons in the rat.
    Ezure K; Tanaka I; Miyazaki M
    Exp Brain Res; 1999 Oct; 128(4):471-80. PubMed ID: 10541741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical monitoring of glutaminergic excitatory postsynaptic potentials from the early developing embryonic chick brain stem.
    Momose-Sato Y; Sakai T; Hirota A; Sato K; Kamino K
    Ann N Y Acad Sci; 1993 Dec; 707():454-7. PubMed ID: 9137593
    [No Abstract]   [Full Text] [Related]  

  • 15. Cellular mechanisms of the trigeminally evoked startle response.
    Schmid S; Simons NS; Schnitzler HU
    Eur J Neurosci; 2003 Apr; 17(7):1438-44. PubMed ID: 12713646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses to glossopharyngeal stimulus in the early embryonic chick brainstem: spatiotemporal patterns in three dimensions from repeated multiple-site optical recording of electrical activity.
    Sato K; Momose-Sato Y; Sakai T; Hirota A; Kamino K
    J Neurosci; 1995 Mar; 15(3 Pt 2):2123-40. PubMed ID: 7891156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacological mechanisms underlying switching from the large-scale depolarization wave to segregated activity in the mouse central nervous system.
    Momose-Sato Y; Nakamori T; Sato K
    Eur J Neurosci; 2012 Apr; 35(8):1242-52. PubMed ID: 22512255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical approaches to embryonic development of neural functions in the brainstem.
    Momose-Sato Y; Sato K; Kamino K
    Prog Neurobiol; 2001 Feb; 63(2):151-97. PubMed ID: 11124445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical mapping reveals the functional organization of the trigeminal nuclei in the chick embryo.
    Sato K; Momose-Sato Y; Mochida H; Arai Y; Yazawa I; Kamino K
    Neuroscience; 1999; 93(2):687-702. PubMed ID: 10465453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient oxidative stress evokes early changes in the functional properties of neonatal rat hypoglossal motoneurons in vitro.
    Nani F; Cifra A; Nistri A
    Eur J Neurosci; 2010 Mar; 31(6):951-66. PubMed ID: 20214680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.