BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 28951326)

  • 21. Optical mapping reveals developmental dynamics of Mg2+-/APV-sensitive components of glossopharyngeal glutamatergic EPSPs in the embryonic chick NTS.
    Sato K; Momose-Sato Y
    J Neurophysiol; 2004 Oct; 92(4):2538-47. PubMed ID: 15175368
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developmental profiles of the intrinsic properties and synaptic function of auditory neurons in preterm and term baboon neonates.
    Kim SE; Lee SY; Blanco CL; Kim JH
    J Neurosci; 2014 Aug; 34(34):11399-404. PubMed ID: 25143619
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of synaptic inputs in determining input resistance of developing brain stem motoneurons.
    Núñez-Abades PA; Pattillo JM; Hodgson TM; Cameron WE
    J Neurophysiol; 2000 Nov; 84(5):2317-29. PubMed ID: 11067975
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The contribution of synaptic inputs to sustained depolarizations in reticulospinal neurons.
    Antri M; Fénelon K; Dubuc R
    J Neurosci; 2009 Jan; 29(4):1140-51. PubMed ID: 19176823
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spontaneous network activity in the embryonic spinal cord regulates AMPAergic and GABAergic synaptic strength.
    Gonzalez-Islas C; Wenner P
    Neuron; 2006 Feb; 49(4):563-75. PubMed ID: 16476665
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical imaging of spreading depolarization waves triggered by spinal nerve stimulation in the chick embryo: possible mechanisms for large-scale coactivation of the central nervous system.
    Mochida H; Sato K; Arai Y; Sasaki S; Kamino K; Momose-Sato Y
    Eur J Neurosci; 2001 Sep; 14(5):809-20. PubMed ID: 11576185
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Voltage-sensitive dye recording of glossopharyngeal nerve-related synaptic networks in the embryonic mouse brainstem.
    Momose-Sato Y; Sato K
    IBRO Rep; 2019 Jun; 6():176-184. PubMed ID: 31193501
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical imaging analysis of neural circuit formation in the embryonic brain.
    Sato K; Momose-Sato Y
    Clin Exp Pharmacol Physiol; 2008 May; 35(5-6):706-13. PubMed ID: 18067593
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatiotemporal patterns of dorsal root-evoked network activity in the neonatal rat spinal cord: optical and intracellular recordings.
    Ziskind-Conhaim L; Redman S
    J Neurophysiol; 2005 Sep; 94(3):1952-61. PubMed ID: 15888530
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synaptic pharmacology in the turtle accessory optic system.
    Kogo N; Fan TX; Ariel M
    Exp Brain Res; 2002 Dec; 147(4):464-72. PubMed ID: 12444478
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Voltage-sensitive dye imaging analysis of functional development of the neonatal rat corticostriatal projection.
    Inaji M; Sato K; Momose-Sato Y; Ohno K
    Neuroimage; 2011 Feb; 54(3):1831-9. PubMed ID: 20920587
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optical mapping of early embryonic expressions of Mg(2+)-/APV-sensitive components of vagal glutaminergic EPSPs in the chick brainstem.
    Momose-Sato Y; Sakai T; Hirota A; Sato K; Kamino K
    J Neurosci; 1994 Dec; 14(12):7572-84. PubMed ID: 7996197
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optogenetic approaches to characterize the long-range synaptic pathways from the hypothalamus to brain stem autonomic nuclei.
    Piñol RA; Bateman R; Mendelowitz D
    J Neurosci Methods; 2012 Sep; 210(2):238-46. PubMed ID: 22890236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of excitatory and inhibitory spontaneous synaptic activity in mouse retinal ganglion cells.
    Tian N; Hwang TN; Copenhagen DR
    J Neurophysiol; 1998 Sep; 80(3):1327-40. PubMed ID: 9744942
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Maintenance of the large-scale depolarization wave in the embryonic chick brain against deprivation of the rhythm generator.
    Momose-Sato Y; Sato K
    Neuroscience; 2014 Apr; 266():186-96. PubMed ID: 24568731
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synapse- and subtype-specific modulation of synaptic transmission by nicotinic acetylcholine receptors in the ventrobasal thalamus.
    Nagumo Y; Takeuchi Y; Imoto K; Miyata M
    Neurosci Res; 2011 Mar; 69(3):203-13. PubMed ID: 21145925
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reliability of monosynaptic sensory transmission in brain stem neurons in vitro.
    Doyle MW; Andresen MC
    J Neurophysiol; 2001 May; 85(5):2213-23. PubMed ID: 11353036
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synaptic plasticity in rat subthalamic nucleus induced by high-frequency stimulation.
    Shen KZ; Zhu ZT; Munhall A; Johnson SW
    Synapse; 2003 Dec; 50(4):314-9. PubMed ID: 14556236
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid plasticity at inhibitory and excitatory synapses in the hippocampus induced by ictal epileptiform discharges.
    Lopantsev V; Both M; Draguhn A
    Eur J Neurosci; 2009 Mar; 29(6):1153-64. PubMed ID: 19302151
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optical assessment of spatial patterning of strength-duration relationship for vagal responses in the early embryonic chick brainstem.
    Sato K; Momose-Sato Y; Sakai T; Hirota A; Komuro H; Kamino K
    Jpn J Physiol; 1993; 43(4):521-39. PubMed ID: 8114361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.