These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Ginsenoside 20(S)-Rg3 Inhibits the Warburg Effect Via Modulating DNMT3A/ MiR-532-3p/HK2 Pathway in Ovarian Cancer Cells. Zhou Y; Zheng X; Lu J; Chen W; Li X; Zhao L Cell Physiol Biochem; 2018; 45(6):2548-2559. PubMed ID: 29558748 [TBL] [Abstract][Full Text] [Related]
3. Overcoming cisplatin resistance of ovarian cancer cells by targeting HIF-1-regulated cancer metabolism. Ai Z; Lu Y; Qiu S; Fan Z Cancer Lett; 2016 Apr; 373(1):36-44. PubMed ID: 26801746 [TBL] [Abstract][Full Text] [Related]
4. Probing Metabolic Changes in IFNγ-Treated Ovarian Cancer Cells. Kaur P; Nagar S; Bhagwat M; Uddin MM; Zhu Y; Vancura A Methods Mol Biol; 2020; 2108():197-207. PubMed ID: 31939182 [TBL] [Abstract][Full Text] [Related]
5. Tumor cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase II inhibition--a Warburg-reversing effect. Lu CL; Qin L; Liu HC; Candas D; Fan M; Li JJ PLoS One; 2015; 10(3):e0121046. PubMed ID: 25807077 [TBL] [Abstract][Full Text] [Related]
6. Manipulation of tumor metabolism for therapeutic approaches: ovarian cancer-derived cell lines as a model system. Goetze K; Fabian CG; Siebers A; Binz L; Faber D; Indraccolo S; Nardo G; Sattler UG; Mueller-Klieser W Cell Oncol (Dordr); 2015 Oct; 38(5):377-85. PubMed ID: 26288178 [TBL] [Abstract][Full Text] [Related]
7. Cryptotanshinone suppresses ovarian cancer via simultaneous inhibition of glycolysis and oxidative phosphorylation. Wang T; Zhang M; Khan M; Li J; Wu X; Ma T; Li Y Biomed Pharmacother; 2024 Jan; 170():115956. PubMed ID: 38039759 [TBL] [Abstract][Full Text] [Related]
8. PTTG regulates the metabolic switch of ovarian cancer cells via the c-myc pathway. Wang X; Duan W; Li X; Liu J; Li D; Ye L; Qian L; Yang A; Xu Q; Liu H; Fu Q; Wu E; Ma Q; Shen X Oncotarget; 2015 Dec; 6(38):40959-69. PubMed ID: 26516926 [TBL] [Abstract][Full Text] [Related]
9. Ochratoxin A induces reprogramming of glucose metabolism by switching energy metabolism from oxidative phosphorylation to glycolysis in human gastric epithelium GES-1 cells in vitro. Wang Y; Zhao M; Cui J; Wu X; Li Y; Wu W; Zhang X Toxicol Lett; 2020 Oct; 333():232-241. PubMed ID: 32835834 [TBL] [Abstract][Full Text] [Related]
10. "Metabolic reprogramming" in ovarian cancer cells resistant to cisplatin. Montopoli M; Bellanda M; Lonardoni F; Ragazzi E; Dorigo P; Froldi G; Mammi S; Caparrotta L Curr Cancer Drug Targets; 2011 Feb; 11(2):226-35. PubMed ID: 21158717 [TBL] [Abstract][Full Text] [Related]
11. Cyclophilin D Modulates the Cardiac Mitochondrial Target of Isoflurane, Sevoflurane, and Desflurane. Harisseh R; Chiari P; Villedieu C; Sueur P; Abrial M; Fellahi JL; Ovize M; Gharib A J Cardiovasc Pharmacol; 2017 May; 69(5):326-334. PubMed ID: 28328748 [TBL] [Abstract][Full Text] [Related]
12. Atorvastatin protects the proliferative ability of human umbilical vein endothelial cells inhibited by angiotensin II by changing mitochondrial energy metabolism. Chang Y; Li Y; Ye N; Guo X; Li Z; Sun G; Sun Y Int J Mol Med; 2018 Jan; 41(1):33-42. PubMed ID: 29115384 [TBL] [Abstract][Full Text] [Related]
13. Gene regulatory networking reveals the molecular cue to lysophosphatidic acid-induced metabolic adaptations in ovarian cancer cells. Ray U; Roy Chowdhury S; Vasudevan M; Bankar K; Roychoudhury S; Roy SS Mol Oncol; 2017 May; 11(5):491-516. PubMed ID: 28236660 [TBL] [Abstract][Full Text] [Related]
14. MicroRNA-144 mediates metabolic shift in ovarian cancer cells by directly targeting Glut1. Fan JY; Yang Y; Xie JY; Lu YL; Shi K; Huang YQ Tumour Biol; 2016 May; 37(5):6855-60. PubMed ID: 26662316 [TBL] [Abstract][Full Text] [Related]
15. A Novel Methodology for Bioenergetic Analysis of Plasmodium falciparum Reveals a Glucose-Regulated Metabolic Shift and Enables Mode of Action Analyses of Mitochondrial Inhibitors. Sakata-Kato T; Wirth DF ACS Infect Dis; 2016 Dec; 2(12):903-916. PubMed ID: 27718558 [TBL] [Abstract][Full Text] [Related]
16. Availability of the key metabolic substrates dictates the respiratory response of cancer cells to the mitochondrial uncoupling. Zhdanov AV; Waters AH; Golubeva AV; Dmitriev RI; Papkovsky DB Biochim Biophys Acta; 2014 Jan; 1837(1):51-62. PubMed ID: 23891695 [TBL] [Abstract][Full Text] [Related]
17. The mitochondria-targeted imidazole substituted oleic acid 'TPP-IOA' affects mitochondrial bioenergetics and its protective efficacy in cells is influenced by cellular dependence on aerobic metabolism. Maddalena LA; Ghelfi M; Atkinson J; Stuart JA Biochim Biophys Acta Bioenerg; 2017 Jan; 1858(1):73-85. PubMed ID: 27836699 [TBL] [Abstract][Full Text] [Related]
18. Metabolic reprogramming and AMPKα1 pathway activation by caulerpin in colorectal cancer cells. Yu H; Zhang H; Dong M; Wu Z; Shen Z; Xie Y; Kong Z; Dai X; Xu B Int J Oncol; 2017 Jan; 50(1):161-172. PubMed ID: 27922662 [TBL] [Abstract][Full Text] [Related]
19. Molecular Pathways: Targeting Cellular Energy Metabolism in Cancer via Inhibition of SLC2A1 and LDHA. Ooi AT; Gomperts BN Clin Cancer Res; 2015 Jun; 21(11):2440-4. PubMed ID: 25838393 [TBL] [Abstract][Full Text] [Related]
20. PGC1α regulates mitochondrial oxidative phosphorylation involved in cisplatin resistance in ovarian cancer cells via nucleo-mitochondrial transcriptional feedback. Shen L; Zhou L; Xia M; Lin N; Ma J; Dong D; Sun L Exp Cell Res; 2021 Jan; 398(1):112369. PubMed ID: 33220258 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]