BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 28951853)

  • 1. Ironing Out the Unconventional Mechanisms of Iron Acquisition and Gene Regulation in
    Pokorzynski ND; Thompson CC; Carabeo RA
    Front Cell Infect Microbiol; 2017; 7():394. PubMed ID: 28951853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Host Cell Amplification of Nutritional Stress Contributes To Persistence in Chlamydia trachomatis.
    Pokorzynski ND; Alla MR; Carabeo RA
    mBio; 2022 Dec; 13(6):e0271922. PubMed ID: 36377897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A bipartite iron-dependent transcriptional regulation of the tryptophan salvage pathway in
    Pokorzynski ND; Brinkworth AJ; Carabeo R
    Elife; 2019 Apr; 8():. PubMed ID: 30938288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Repressor Function of the
    Zhang Q; Rosario CJ; Sheehan LM; Rizvi SM; Brothwell JA; He C; Tan M
    J Bacteriol; 2020 Mar; 202(8):. PubMed ID: 31988079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlamydia trachomatis ChxR is a transcriptional regulator of virulence factors that function in in vivo host-pathogen interactions.
    Yang C; Kari L; Sturdevant GL; Song L; Patton MJ; Couch CE; Ilgenfritz JM; Southern TR; Whitmire WM; Briones M; Bonner C; Grant C; Hu P; McClarty G; Caldwell HD
    Pathog Dis; 2017 Apr; 75(3):. PubMed ID: 28369275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of iron-responsive proteins expressed by Chlamydia trachomatis reticulate bodies during intracellular growth.
    Dill BD; Dessus-Babus S; Raulston JE
    Microbiology (Reading); 2009 Jan; 155(Pt 1):210-219. PubMed ID: 19118361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The molecular biology and diagnostics of Chlamydia trachomatis.
    Birkelund S
    Dan Med Bull; 1992 Aug; 39(4):304-20. PubMed ID: 1526183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transposon Mutagenesis in Chlamydia trachomatis Identifies CT339 as a ComEC Homolog Important for DNA Uptake and Lateral Gene Transfer.
    LaBrie SD; Dimond ZE; Harrison KS; Baid S; Wickstrum J; Suchland RJ; Hefty PS
    mBio; 2019 Aug; 10(4):. PubMed ID: 31387908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Characterization of the ClpC AAA+ ATPase in the Biology of Chlamydia trachomatis.
    Pan S; Jensen AA; Wood NA; Henrichfreise B; Brötz-Oesterhelt H; Fisher DJ; Sass P; Ouellette SP
    mBio; 2023 Apr; 14(2):e0007523. PubMed ID: 36975997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanism of tryptophan-dependent transcriptional regulation in Chlamydia trachomatis.
    Akers JC; Tan M
    J Bacteriol; 2006 Jun; 188(12):4236-43. PubMed ID: 16740930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cleavage of a putative metal permease in Chlamydia trachomatis yields an iron-dependent transcriptional repressor.
    Thompson CC; Nicod SS; Malcolm DS; Grieshaber SS; Carabeo RA
    Proc Natl Acad Sci U S A; 2012 Jun; 109(26):10546-51. PubMed ID: 22689982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlamydial persistence: beyond the biphasic paradigm.
    Hogan RJ; Mathews SA; Mukhopadhyay S; Summersgill JT; Timms P
    Infect Immun; 2004 Apr; 72(4):1843-55. PubMed ID: 15039303
    [No Abstract]   [Full Text] [Related]  

  • 13. Genomewide Transcriptional Responses of Iron-Starved
    Brinkworth AJ; Wildung MR; Carabeo RA
    mSystems; 2018; 3(1):. PubMed ID: 29468197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effector proteins of Clamidia].
    Kariagina AS; Alekseevskiĭ AV; Spirin SA; Zigangirova NA; Gintsburg AL
    Mol Biol (Mosk); 2009; 43(6):963-83. PubMed ID: 20088373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and Metal Binding Properties of
    Luo Z; Neville SL; Campbell R; Morey JR; Menon S; Thomas M; Eijkelkamp BA; Ween MP; Huston WM; Kobe B; McDevitt CA
    J Bacteriol; 2019 Dec; 202(1):. PubMed ID: 31611288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directional evolution of Chlamydia trachomatis towards niche-specific adaptation.
    Borges V; Nunes A; Ferreira R; Borrego MJ; Gomes JP
    J Bacteriol; 2012 Nov; 194(22):6143-53. PubMed ID: 22961851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New frontiers in type III secretion biology: the Chlamydia perspective.
    Mueller KE; Plano GV; Fields KA
    Infect Immun; 2014 Jan; 82(1):2-9. PubMed ID: 24126521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlamydia spp. development is differentially altered by treatment with the LpxC inhibitor LPC-011.
    Cram ED; Rockey DD; Dolan BP
    BMC Microbiol; 2017 Apr; 17(1):98. PubMed ID: 28438125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous transcriptional profiling of bacteria and their host cells.
    Humphrys MS; Creasy T; Sun Y; Shetty AC; Chibucos MC; Drabek EF; Fraser CM; Farooq U; Sengamalay N; Ott S; Shou H; Bavoil PM; Mahurkar A; Myers GS
    PLoS One; 2013; 8(12):e80597. PubMed ID: 24324615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chlamydia cell biology and pathogenesis.
    Elwell C; Mirrashidi K; Engel J
    Nat Rev Microbiol; 2016 Jun; 14(6):385-400. PubMed ID: 27108705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.