BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 28951853)

  • 21. Characterization of interactions between inclusion membrane proteins from Chlamydia trachomatis.
    Gauliard E; Ouellette SP; Rueden KJ; Ladant D
    Front Cell Infect Microbiol; 2015; 5():13. PubMed ID: 25717440
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synovial Chlamydia trachomatis up regulates expression of a panel of genes similar to that transcribed by Mycobacterium tuberculosis during persistent infection.
    Gérard HC; Whittum-Hudson JA; Schumacher HR; Hudson AP
    Ann Rheum Dis; 2006 Mar; 65(3):321-7. PubMed ID: 16192289
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expression and localization of predicted inclusion membrane proteins in Chlamydia trachomatis.
    Weber MM; Bauler LD; Lam J; Hackstadt T
    Infect Immun; 2015 Dec; 83(12):4710-8. PubMed ID: 26416906
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification and functional analysis of CT069 as a novel transcriptional regulator in Chlamydia.
    Akers JC; HoDac H; Lathrop RH; Tan M
    J Bacteriol; 2011 Nov; 193(22):6123-31. PubMed ID: 21908669
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chlamydia trachomatis YtgA is an iron-binding periplasmic protein induced by iron restriction.
    Miller JD; Sal MS; Schell M; Whittimore JD; Raulston JE
    Microbiology (Reading); 2009 Sep; 155(Pt 9):2884-2894. PubMed ID: 19556290
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Damage/Danger Associated Molecular Patterns (DAMPs) Modulate Chlamydia pecorum and C. trachomatis Serovar E Inclusion Development In Vitro.
    Leonard CA; Schoborg RV; Borel N
    PLoS One; 2015; 10(8):e0134943. PubMed ID: 26248286
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Examination of an inducible expression system for limiting iron availability during Chlamydia trachomatis infection.
    Dill BD; Raulston JE
    Microbes Infect; 2007 Jul; 9(8):947-53. PubMed ID: 17544798
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New insights into Chlamydiae persistence: an energy metabolism strategy?
    Di Pietro M; Filardo S; De Santis F; Sessa R
    Int J Immunopathol Pharmacol; 2013; 26(2):525-8. PubMed ID: 23755769
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CTL0511 from Chlamydia trachomatis Is a Type 2C Protein Phosphatase with Broad Substrate Specificity.
    Claywell JE; Fisher DJ
    J Bacteriol; 2016 Jul; 198(13):1827-1836. PubMed ID: 27114464
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chlamydia trachomatis alters iron-regulatory protein-1 binding capacity and modulates cellular iron homeostasis in HeLa-229 cells.
    Vardhan H; Bhengraj AR; Jha R; Singh Mittal A
    J Biomed Biotechnol; 2009; 2009():342032. PubMed ID: 19688112
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Floxed-Cassette Allelic Exchange Mutagenesis Enables Markerless Gene Deletion in Chlamydia trachomatis and Can Reverse Cassette-Induced Polar Effects.
    Keb G; Hayman R; Fields KA
    J Bacteriol; 2018 Dec; 200(24):. PubMed ID: 30224436
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multifunctional analysis of Chlamydia-specific genes in a yeast expression system.
    Sisko JL; Spaeth K; Kumar Y; Valdivia RH
    Mol Microbiol; 2006 Apr; 60(1):51-66. PubMed ID: 16556220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glycosylation-dependent galectin-receptor interactions promote
    Lujan AL; Croci DO; Gambarte Tudela JA; Losinno AD; Cagnoni AJ; Mariño KV; Damiani MT; Rabinovich GA
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):E6000-E6009. PubMed ID: 29891717
    [No Abstract]   [Full Text] [Related]  

  • 34. Chlamydial Hsp60-2 is iron responsive in Chlamydia trachomatis serovar E-infected human endometrial epithelial cells in vitro.
    LaRue RW; Dill BD; Giles DK; Whittimore JD; Raulston JE
    Infect Immun; 2007 May; 75(5):2374-80. PubMed ID: 17307941
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo and in vitro studies of Chlamydia trachomatis TrpR:DNA interactions.
    Carlson JH; Wood H; Roshick C; Caldwell HD; McClarty G
    Mol Microbiol; 2006 Mar; 59(6):1678-91. PubMed ID: 16553875
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Localization of the hypothetical protein CT249 in the Chlamydia trachomatis inclusion membrane].
    Jia TJ; Liu DW; Luo JH; Zhong GM
    Wei Sheng Wu Xue Bao; 2007 Aug; 47(4):645-8. PubMed ID: 17944365
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Growth characteristics of Chlamydia trachomatis in human intestinal epithelial Caco-2 cells.
    Lantos I; Virok DP; Mosolygó T; Rázga Z; Burián K; Endrész V
    Pathog Dis; 2018 Apr; 76(3):. PubMed ID: 29635314
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of Chlamydia trachomatis genomic sequences recognized by chlamydial divalent cation-dependent regulator A (DcrA).
    Rau A; Wyllie S; Whittimore J; Raulston JE
    J Bacteriol; 2005 Jan; 187(2):443-8. PubMed ID: 15629915
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Euo is a developmental regulator that represses late genes and activates midcycle genes in
    Hakiem OR; Rizvi SMA; Ramirez C; Tan M
    mBio; 2023 Oct; 14(5):e0046523. PubMed ID: 37565751
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chlamydia trachomatis Type III Secretion Proteins Regulate Transcription.
    Hanson BR; Slepenkin A; Peterson EM; Tan M
    J Bacteriol; 2015 Oct; 197(20):3238-44. PubMed ID: 26216849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.