BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 28951875)

  • 1. Biotechnological Strategies to Improve Plant Biomass Quality for Bioethanol Production.
    Peña-Castro JM; Del Moral S; Núñez-López L; Barrera-Figueroa BE; Amaya-Delgado L
    Biomed Res Int; 2017; 2017():7824076. PubMed ID: 28951875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production.
    Gu T; Held MA; Faik A
    Environ Technol; 2013; 34(13-16):1735-49. PubMed ID: 24350431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomass recalcitrance: engineering plants and enzymes for biofuels production.
    Himmel ME; Ding SY; Johnson DK; Adney WS; Nimlos MR; Brady JW; Foust TD
    Science; 2007 Feb; 315(5813):804-7. PubMed ID: 17289988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of GA20-OXIDASE1 impacts plant height, biomass allocation and saccharification efficiency in maize.
    Voorend W; Nelissen H; Vanholme R; De Vliegher A; Van Breusegem F; Boerjan W; Roldán-Ruiz I; Muylle H; Inzé D
    Plant Biotechnol J; 2016 Mar; 14(3):997-1007. PubMed ID: 26903034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant cell walls to ethanol.
    Jordan DB; Bowman MJ; Braker JD; Dien BS; Hector RE; Lee CC; Mertens JA; Wagschal K
    Biochem J; 2012 Mar; 442(2):241-52. PubMed ID: 22329798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic engineering approaches to improve bioethanol production from maize.
    Torney F; Moeller L; Scarpa A; Wang K
    Curr Opin Biotechnol; 2007 Jun; 18(3):193-9. PubMed ID: 17399975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of a Modern Hybrid and an Ancient Sugarcane Implicates a Complex Interplay of Factors in Affecting Recalcitrance to Cellulosic Ethanol Production.
    Guzzo de Carli Poelking V; Giordano A; Ricci-Silva ME; Rhys Williams TC; Alves Peçanha D; Contin Ventrella M; Rencoret J; Ralph J; Pereira Barbosa MH; Loureiro M
    PLoS One; 2015; 10(8):e0134964. PubMed ID: 26252208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant biotechnology for lignocellulosic biofuel production.
    Li Q; Song J; Peng S; Wang JP; Qu GZ; Sederoff RR; Chiang VL
    Plant Biotechnol J; 2014 Dec; 12(9):1174-92. PubMed ID: 25330253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The targeting of starch binding domains from starch synthase III to the cell wall alters cell wall composition and properties.
    Grisolia MJ; Peralta DA; Valdez HA; Barchiesi J; Gomez-Casati DF; Busi MV
    Plant Mol Biol; 2017 Jan; 93(1-2):121-135. PubMed ID: 27770231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lignin modification improves fermentable sugar yields for biofuel production.
    Chen F; Dixon RA
    Nat Biotechnol; 2007 Jul; 25(7):759-61. PubMed ID: 17572667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production.
    Li H; Kim NJ; Jiang M; Kang JW; Chang HN
    Bioresour Technol; 2009 Jul; 100(13):3245-51. PubMed ID: 19289273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How endogenous plant cell-wall degradation mechanisms can help achieve higher efficiency in saccharification of biomass.
    Tavares EQ; De Souza AP; Buckeridge MS
    J Exp Bot; 2015 Jul; 66(14):4133-43. PubMed ID: 25922489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered lignin biosynthesis improves cellulosic bioethanol production in transgenic maize plants down-regulated for cinnamyl alcohol dehydrogenase.
    Fornalé S; Capellades M; Encina A; Wang K; Irar S; Lapierre C; Ruel K; Joseleau JP; Berenguer J; Puigdomènech P; Rigau J; Caparrós-Ruiz D
    Mol Plant; 2012 Jul; 5(4):817-30. PubMed ID: 22147756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fuel from plant cell walls: recent developments in second generation bioethanol research.
    Cook C; Devoto A
    J Sci Food Agric; 2011 Aug; 91(10):1729-32. PubMed ID: 21681755
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Fan C; Feng S; Huang J; Wang Y; Wu L; Li X; Wang L; Tu Y; Xia T; Li J; Cai X; Peng L
    Biotechnol Biofuels; 2017; 10():221. PubMed ID: 28932262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro and macroalgal biomass: a renewable source for bioethanol.
    John RP; Anisha GS; Nampoothiri KM; Pandey A
    Bioresour Technol; 2011 Jan; 102(1):186-93. PubMed ID: 20663661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lignins and lignocellulosics: a better control of synthesis for new and improved uses.
    Boudet AM; Kajita S; Grima-Pettenati J; Goffner D
    Trends Plant Sci; 2003 Dec; 8(12):576-81. PubMed ID: 14659706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harnessing energy from plant biomass.
    Chang MC
    Curr Opin Chem Biol; 2007 Dec; 11(6):677-84. PubMed ID: 17942363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cellulose resource matrix.
    Keijsers ER; Yılmaz G; van Dam JE
    Carbohydr Polym; 2013 Mar; 93(1):9-21. PubMed ID: 23465896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficacy of a hot washing process for pretreated yellow poplar to enhance bioethanol production.
    Nagle NJ; Elander RT; Newman MM; Rohrback BT; Ruiz RO; Torget RW
    Biotechnol Prog; 2002; 18(4):734-8. PubMed ID: 12153306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.