These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 28951923)

  • 1. Compression simulations of plant tissue in 3D using a mass-spring system approach and discrete element method.
    Pieczywek PM; Zdunek A
    Soft Matter; 2017 Oct; 13(40):7318-7331. PubMed ID: 28951923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrete element modelling of tomato tissue deformation and failure at the cellular scale.
    Diels E; Wang Z; Nicolai B; Ramon H; Smeets B
    Soft Matter; 2019 Apr; 15(16):3362-3378. PubMed ID: 30932127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A particle-based model to simulate the micromechanics of single-plant parenchyma cells and aggregates.
    Van Liedekerke P; Ghysels P; Tijskens E; Samaey G; Smeedts B; Roose D; Ramon H
    Phys Biol; 2010 May; 7(2):026006. PubMed ID: 20505228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling the mechanical properties of single suspension-cultured tomato cells.
    Wang CX; Wang L; Thomas CR
    Ann Bot; 2004 Apr; 93(4):443-53. PubMed ID: 15023704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Porosity on the Mechanical Behavior during Uniaxial Compressive Testing on Voronoi-Based Open-Cell Aluminium Foam.
    Sharma V; Grujovic N; Zivic F; Slavkovic V
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30934831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Material modeling of biofilm mechanical properties.
    Laspidou CS; Spyrou LA; Aravas N; Rittmann BE
    Math Biosci; 2014 May; 251():11-5. PubMed ID: 24560820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poro-viscoelastic behavior of gelatin hydrogels under compression-implications for bioelasticity imaging.
    Kalyanam S; Yapp RD; Insana MF
    J Biomech Eng; 2009 Aug; 131(8):081005. PubMed ID: 19604017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracortical stiffness of mid-diaphysis femur bovine bone: lacunar-canalicular based homogenization numerical solutions and microhardness measurements.
    Hage IS; Hamade RF
    J Mater Sci Mater Med; 2017 Sep; 28(9):135. PubMed ID: 28762142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrete mechanical growth model for plant tissue.
    Weise LD; Ten Tusscher KHWJ
    PLoS One; 2019; 14(8):e0221059. PubMed ID: 31404094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of static compression on mechanical parameters of acoustic foams.
    Geslain A; Dazel O; Groby JP; Sahraoui S; Lauriks W
    J Acoust Soc Am; 2011 Aug; 130(2):818-25. PubMed ID: 21877797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mechanics model of the compression of cells with finite initial contact area.
    Qiong G; Pitt RE; Ruina A
    Biorheology; 1990; 27(2):225-40. PubMed ID: 2375959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of biomechanical properties of agar based tissue mimicking phantoms for ultrasound stiffness imaging techniques.
    Manickam K; Machireddy RR; Seshadri S
    J Mech Behav Biomed Mater; 2014 Jul; 35():132-43. PubMed ID: 24769915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of the Young's modulus of the human pars tensa using in-situ pressurization and inverse finite-element analysis.
    Rohani SA; Ghomashchi S; Agrawal SK; Ladak HM
    Hear Res; 2017 Mar; 345():69-78. PubMed ID: 28087415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphology and compression behaviour of biodegradable scaffolds produced by the sintering process.
    Ghassemieh E
    Proc Inst Mech Eng H; 2008 Nov; 222(8):1247-62. PubMed ID: 19143418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical influence of disk properties on the load transfer of healthy and degenerated disks using a poroelastic finite element model.
    Chagnon A; Aubin CE; Villemure I
    J Biomech Eng; 2010 Nov; 132(11):111006. PubMed ID: 21034147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mechanistic insight into the mechanical role of the stratum corneum during stretching and compression of the skin.
    Leyva-Mendivil MF; Page A; Bressloff NW; Limbert G
    J Mech Behav Biomed Mater; 2015 Sep; 49():197-219. PubMed ID: 26042766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mechanics model for the compression of plant and vegetative tissues.
    Zhu HX; Melrose JR
    J Theor Biol; 2003 Mar; 221(1):89-101. PubMed ID: 12634046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Biphasic Transversely Isotropic Poroviscoelastic Model for the Unconfined Compression of Hydrated Soft Tissue.
    Hatami-Marbini H; Maulik R
    J Biomech Eng; 2016 Mar; 138(3):4032059. PubMed ID: 26593630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.