These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 28951991)

  • 1. Bond length pattern associated with charge carriers in armchair graphene nanoribbons.
    Teixeira JF; de Oliveira Neto PH; da Cunha WF; Ribeiro LA; E Silva GM
    J Mol Model; 2017 Sep; 23(10):293. PubMed ID: 28951991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability conditions of armchair graphene nanoribbon bipolarons.
    Abreu AVP; Ribeiro Junior LA; Silva GG; Pereira Junior ML; Enders BG; Fonseca ALA; E Silva GM
    J Mol Model; 2019 Jul; 25(8):245. PubMed ID: 31342176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of Polarons in Graphene Nanoribbons.
    Ribeiro LA; da Cunha WF; Fonseca AL; e Silva GM; Stafström S
    J Phys Chem Lett; 2015 Feb; 6(3):510-4. PubMed ID: 26261972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron-Lattice Coupling in Armchair Graphene Nanoribbons.
    de Oliveira Neto PH; Teixeira JF; da Cunha WF; Gargano R; E Silva GM
    J Phys Chem Lett; 2012 Oct; 3(20):3039-42. PubMed ID: 26292246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of the Electron-Phonon Interactions on the Polaron Dynamics in Graphene Nanoribbons.
    Abreu AV; Teixeira JF; Fonseca AL; Gargano R; E Silva GM; Ribeiro LA
    J Phys Chem A; 2016 Jul; 120(27):4901-6. PubMed ID: 27050874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of
    Davoudiniya M; Yang B; Sanyal B
    Phys Chem Chem Phys; 2024 Jan; 26(3):1936-1949. PubMed ID: 38116600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of layer stacking on the electronic structure of graphene nanoribbons.
    Kharche N; Zhou Y; O'Brien KP; Kar S; Nayak SK
    ACS Nano; 2011 Aug; 5(8):6096-101. PubMed ID: 21766785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective Mass of Quasiparticles in Armchair Graphene Nanoribbons.
    Fischer MM; de Sousa LE; Luiz E Castro L; Ribeiro LA; de Sousa RT; Magela E Silva G; de Oliveira Neto PH
    Sci Rep; 2019 Nov; 9(1):17990. PubMed ID: 31784579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermoelectric transport properties of armchair graphene nanoribbon heterostructures.
    Almeida PA; Martins GB
    J Phys Condens Matter; 2022 Jun; 34(33):. PubMed ID: 35675807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermoelectric properties of nanostructured systems based on narrow armchair graphene nanoribbons.
    Hozana C; Latgé A
    J Phys Condens Matter; 2019 Mar; 31(12):125303. PubMed ID: 30654349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiconducting states and transport in metallic armchair-edged graphene nanoribbons.
    Chen X; Wang H; Wan H; Song K; Zhou G
    J Phys Condens Matter; 2011 Aug; 23(31):315304. PubMed ID: 21778565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polaron Properties in Armchair Graphene Nanoribbons.
    da Cunha WF; Acioli PH; de Oliveira Neto PH; Gargano R; E Silva GM
    J Phys Chem A; 2016 Jul; 120(27):4893-900. PubMed ID: 26918483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Width effects on bilayer graphene nanoribbon polarons.
    Logrado AL; Cassiano TSA; da Cunha WF; Gargano R; E Silva GM; de Oliveira Neto PH
    Phys Chem Chem Phys; 2024 May; 26(20):14948-14959. PubMed ID: 38739011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-Specific Substitutional Boron Doping of Semiconducting Armchair Graphene Nanoribbons.
    Cloke RR; Marangoni T; Nguyen GD; Joshi T; Rizzo DJ; Bronner C; Cao T; Louie SG; Crommie MF; Fischer FR
    J Am Chem Soc; 2015 Jul; 137(28):8872-5. PubMed ID: 26153349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic Charge Separation and Tunable Electronic Band Gap of Armchair Graphene Nanoribbons Encapsulated in a Double-Walled Carbon Nanotube.
    Kou L; Tang C; Frauenheim T; Chen C
    J Phys Chem Lett; 2013 Apr; 4(8):1328-33. PubMed ID: 26282148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorene nanoribbon as a promising candidate for thermoelectric applications.
    Zhang J; Liu HJ; Cheng L; Wei J; Liang JH; Fan DD; Shi J; Tang XF; Zhang QJ
    Sci Rep; 2014 Sep; 4():6452. PubMed ID: 25245326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum Confinement in Epitaxial Armchair Graphene Nanoribbons on SiC Sidewalls.
    Nhung Nguyen TT; Power SR; Karakachian H; Starke U; Tegenkamp C
    ACS Nano; 2023 Oct; 17(20):20345-20352. PubMed ID: 37788294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scaling of excitons in graphene nanoribbons with armchair shaped edges.
    Zhu X; Su H
    J Phys Chem A; 2011 Nov; 115(43):11998-2003. PubMed ID: 21939213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-Surface Synthesis of 8- and 10-Armchair Graphene Nanoribbons.
    Sun K; Ji P; Zhang J; Wang J; Li X; Xu X; Zhang H; Chi L
    Small; 2019 Apr; 15(15):e1804526. PubMed ID: 30891917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.