These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 28952147)
1. Genetic variation of human neutrophil Fcγ receptors and SIRPα in antibody-dependent cellular cytotoxicity towards cancer cells. Treffers LW; Zhao XW; van der Heijden J; Nagelkerke SQ; van Rees DJ; Gonzalez P; Geissler J; Verkuijlen P; van Houdt M; de Boer M; Kuijpers TW; van den Berg TK; Matlung HL Eur J Immunol; 2018 Feb; 48(2):344-354. PubMed ID: 28952147 [TBL] [Abstract][Full Text] [Related]
2. IgA-Mediated Killing of Tumor Cells by Neutrophils Is Enhanced by CD47-SIRPα Checkpoint Inhibition. Treffers LW; Ten Broeke T; Rösner T; Jansen JHM; van Houdt M; Kahle S; Schornagel K; Verkuijlen PJJH; Prins JM; Franke K; Kuijpers TW; van den Berg TK; Valerius T; Leusen JHW; Matlung HL Cancer Immunol Res; 2020 Jan; 8(1):120-130. PubMed ID: 31690649 [TBL] [Abstract][Full Text] [Related]
3. Analysis of in vitro ADCC and clinical response to trastuzumab: possible relevance of FcγRIIIA/FcγRIIA gene polymorphisms and HER-2 expression levels on breast cancer cell lines. Boero S; Morabito A; Banelli B; Cardinali B; Dozin B; Lunardi G; Piccioli P; Lastraioli S; Carosio R; Salvi S; Levaggi A; Poggio F; D'Alonzo A; Romani M; Del Mastro L; Poggi A; Pistillo MP J Transl Med; 2015 Oct; 13():324. PubMed ID: 26450443 [TBL] [Abstract][Full Text] [Related]
4. Functional characterization of the selective pan-allele anti-SIRPα antibody ADU-1805 that blocks the SIRPα-CD47 innate immune checkpoint. Voets E; Paradé M; Lutje Hulsik D; Spijkers S; Janssen W; Rens J; Reinieren-Beeren I; van den Tillaart G; van Duijnhoven S; Driessen L; Habraken M; van Zandvoort P; Kreijtz J; Vink P; van Elsas A; van Eenennaam H J Immunother Cancer; 2019 Dec; 7(1):340. PubMed ID: 31801627 [TBL] [Abstract][Full Text] [Related]
5. FcγRIIIb Restricts Antibody-Dependent Destruction of Cancer Cells by Human Neutrophils. Treffers LW; van Houdt M; Bruggeman CW; Heineke MH; Zhao XW; van der Heijden J; Nagelkerke SQ; Verkuijlen PJJH; Geissler J; Lissenberg-Thunnissen S; Valerius T; Peipp M; Franke K; van Bruggen R; Kuijpers TW; van Egmond M; Vidarsson G; Matlung HL; van den Berg TK Front Immunol; 2018; 9():3124. PubMed ID: 30761158 [TBL] [Abstract][Full Text] [Related]
6. Neutrophils Kill Antibody-Opsonized Cancer Cells by Trogoptosis. Matlung HL; Babes L; Zhao XW; van Houdt M; Treffers LW; van Rees DJ; Franke K; Schornagel K; Verkuijlen P; Janssen H; Halonen P; Lieftink C; Beijersbergen RL; Leusen JHW; Boelens JJ; Kuhnle I; van der Werff Ten Bosch J; Seeger K; Rutella S; Pagliara D; Matozaki T; Suzuki E; Menke-van der Houven van Oordt CW; van Bruggen R; Roos D; van Lier RAW; Kuijpers TW; Kubes P; van den Berg TK Cell Rep; 2018 Jun; 23(13):3946-3959.e6. PubMed ID: 29949776 [TBL] [Abstract][Full Text] [Related]
7. CD47-signal regulatory protein-α (SIRPα) interactions form a barrier for antibody-mediated tumor cell destruction. Zhao XW; van Beek EM; Schornagel K; Van der Maaden H; Van Houdt M; Otten MA; Finetti P; Van Egmond M; Matozaki T; Kraal G; Birnbaum D; van Elsas A; Kuijpers TW; Bertucci F; van den Berg TK Proc Natl Acad Sci U S A; 2011 Nov; 108(45):18342-7. PubMed ID: 22042861 [TBL] [Abstract][Full Text] [Related]
8. The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer. Matlung HL; Szilagyi K; Barclay NA; van den Berg TK Immunol Rev; 2017 Mar; 276(1):145-164. PubMed ID: 28258703 [TBL] [Abstract][Full Text] [Related]
9. "Velcro" engineering of high affinity CD47 ectodomain as signal regulatory protein α (SIRPα) antagonists that enhance antibody-dependent cellular phagocytosis. Ho CC; Guo N; Sockolosky JT; Ring AM; Weiskopf K; Özkan E; Mori Y; Weissman IL; Garcia KC J Biol Chem; 2015 May; 290(20):12650-63. PubMed ID: 25837251 [TBL] [Abstract][Full Text] [Related]
10. Discovery of high affinity, pan-allelic, and pan-mammalian reactive antibodies against the myeloid checkpoint receptor SIRPα. Sim J; Sockolosky JT; Sangalang E; Izquierdo S; Pedersen D; Harriman W; Wibowo AS; Carter J; Madan A; Doyle L; Harrabi O; Kauder SE; Chen A; Kuo TC; Wan H; Pons J MAbs; 2019; 11(6):1036-1052. PubMed ID: 31257988 [TBL] [Abstract][Full Text] [Related]
11. Differential regulation of human monocytes and NK cells by antibody-opsonized tumors. Yin J; Albers AJ; Smith TS; Riddell GT; Richards JO Cancer Immunol Immunother; 2018 Aug; 67(8):1239-1250. PubMed ID: 29855696 [TBL] [Abstract][Full Text] [Related]
12. Targeting the CD47-SIRPα signaling axis: current studies on B-cell lymphoma immunotherapy. Zhang J; Jin S; Guo X; Qian W J Int Med Res; 2018 Nov; 46(11):4418-4426. PubMed ID: 30226089 [TBL] [Abstract][Full Text] [Related]
13. Kindlin3-Dependent CD11b/CD18-Integrin Activation Is Required for Potentiation of Neutrophil Cytotoxicity by CD47-SIRPα Checkpoint Disruption. Bouti P; Zhao XW; Verkuijlen PJJH; Tool ATJ; van Houdt M; Köker N; Köker MY; Keskin O; Akbayram S; van Bruggen R; Kuijpers TW; Matlung HL; van den Berg TK Cancer Immunol Res; 2021 Feb; 9(2):147-155. PubMed ID: 33355195 [TBL] [Abstract][Full Text] [Related]
14. Prospective Evaluation of Cetuximab-Mediated Antibody-Dependent Cell Cytotoxicity in Metastatic Colorectal Cancer Patients Predicts Treatment Efficacy. Trotta AM; Ottaiano A; Romano C; Nasti G; Nappi A; De Divitiis C; Napolitano M; Zanotta S; Casaretti R; D'Alterio C; Avallone A; Califano D; Iaffaioli RV; Scala S Cancer Immunol Res; 2016 Apr; 4(4):366-74. PubMed ID: 26817995 [TBL] [Abstract][Full Text] [Related]
15. Combining CD47 blockade with trastuzumab eliminates HER2-positive breast cancer cells and overcomes trastuzumab tolerance. Upton R; Banuelos A; Feng D; Biswas T; Kao K; McKenna K; Willingham S; Ho PY; Rosental B; Tal MC; Raveh T; Volkmer JP; Pegram MD; Weissman IL Proc Natl Acad Sci U S A; 2021 Jul; 118(29):. PubMed ID: 34257155 [TBL] [Abstract][Full Text] [Related]
16. CD47-SIRPα Controls ADCC Killing of Primary T Cells by PMN Through a Combination of Trogocytosis and NADPH Oxidase Activation. Gondois-Rey F; Miller T; Laletin V; Morelli X; Collette Y; Nunès J; Olive D Front Immunol; 2022; 13():899068. PubMed ID: 35795660 [TBL] [Abstract][Full Text] [Related]
17. Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. Musolino A; Naldi N; Bortesi B; Pezzuolo D; Capelletti M; Missale G; Laccabue D; Zerbini A; Camisa R; Bisagni G; Neri TM; Ardizzoni A J Clin Oncol; 2008 Apr; 26(11):1789-96. PubMed ID: 18347005 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of epidermal growth factor receptor antibody tumor immunotherapy by glutaminyl cyclase inhibition to interfere with CD47/signal regulatory protein alpha interactions. Baumann N; Rösner T; Jansen JHM; Chan C; Marie Eichholz K; Klausz K; Winterberg D; Müller K; Humpe A; Burger R; Peipp M; Schewe DM; Kellner C; Leusen JHW; Valerius T Cancer Sci; 2021 Aug; 112(8):3029-3040. PubMed ID: 34058788 [TBL] [Abstract][Full Text] [Related]
19. Enhancing IgA-mediated neutrophil cytotoxicity against neuroblastoma by CD47 blockade. Chan C; Stip M; Nederend M; Jansen M; Passchier E; van den Ham F; Wienke J; van Tetering G; Leusen J J Immunother Cancer; 2024 May; 12(5):. PubMed ID: 38782540 [TBL] [Abstract][Full Text] [Related]
20. Blockade of SIRPα-CD47 axis by anti-SIRPα antibody enhances anti-tumor activity of DXd antibody-drug conjugates. Sue M; Tsubaki T; Ishimoto Y; Hayashi S; Ishida S; Otsuka T; Isumi Y; Kawase Y; Yamaguchi J; Nakada T; Ishiguro J; Nakamura K; Kawaida R; Ohtsuka T; Wada T; Agatsuma T; Kawasaki N PLoS One; 2024; 19(6):e0304985. PubMed ID: 38843278 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]