These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

758 related articles for article (PubMed ID: 28952436)

  • 1. Engineered Nanoparticles with Antimicrobial Property.
    Reshma VG; Syama S; Sruthi S; Reshma SC; Remya NS; Mohanan PV
    Curr Drug Metab; 2017; 18(11):1040-1054. PubMed ID: 28952436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prevention of microbial biofilms - the contribution of micro and nanostructured materials.
    Grumezescu AM; Chifiriuc CM
    Curr Med Chem; 2014; 21(29):3311. PubMed ID: 24606506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanotechnology as a therapeutic tool to combat microbial resistance.
    Pelgrift RY; Friedman AJ
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1803-15. PubMed ID: 23892192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the potential of metal and metal oxide nanomaterials for sustainable water and wastewater treatment: A review of their antimicrobial properties.
    Kamyab H; Chelliapan S; Hayder G; Yusuf M; Taheri MM; Rezania S; Hasan M; Yadav KK; Khorami M; Farajnezhad M; Nouri J
    Chemosphere; 2023 Sep; 335():139103. PubMed ID: 37271472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and Antimicrobial Properties of Zinc Oxide Nanoparticles.
    Gharpure S; Ankamwar B
    J Nanosci Nanotechnol; 2020 Oct; 20(10):5977-5996. PubMed ID: 32384943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Review on Nano-Antimicrobials: Metal Nanoparticles, Methods and Mechanisms.
    Hoseinzadeh E; Makhdoumi P; Taha P; Hossini H; Stelling J; Kamal MA; Ashraf GM
    Curr Drug Metab; 2017; 18(2):120-128. PubMed ID: 27908256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colloid particle formulations for antimicrobial applications.
    Halbus AF; Horozov TS; Paunov VN
    Adv Colloid Interface Sci; 2017 Nov; 249():134-148. PubMed ID: 28528626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial activity of the metals and metal oxide nanoparticles.
    Dizaj SM; Lotfipour F; Barzegar-Jalali M; Zarrintan MH; Adibkia K
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():278-84. PubMed ID: 25280707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism.
    Król A; Pomastowski P; Rafińska K; Railean-Plugaru V; Buszewski B
    Adv Colloid Interface Sci; 2017 Nov; 249():37-52. PubMed ID: 28923702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimicrobial effects of TiO(2) and Ag(2)O nanoparticles against drug-resistant bacteria and leishmania parasites.
    Allahverdiyev AM; Abamor ES; Bagirova M; Rafailovich M
    Future Microbiol; 2011 Aug; 6(8):933-40. PubMed ID: 21861623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship Between Structure And Antimicrobial Activity Of Zinc Oxide Nanoparticles: An Overview.
    Lallo da Silva B; Abuçafy MP; Berbel Manaia E; Oshiro Junior JA; Chiari-Andréo BG; Pietro RCR; Chiavacci LA
    Int J Nanomedicine; 2019; 14():9395-9410. PubMed ID: 31819439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sol-gel encapsulation of binary Zn(II) compounds in silica nanoparticles. Structure-activity correlations in hybrid materials targeting Zn(II) antibacterial use.
    Halevas E; Nday CM; Kaprara E; Psycharis V; Raptopoulou CP; Jackson GE; Litsardakis G; Salifoglou A
    J Inorg Biochem; 2015 Oct; 151():150-63. PubMed ID: 26198972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imparting Pharmaceutical Applications to the Surface of Fabrics for Wound and Skin Care by Ultrasonic Waves.
    Gedanken A; Perkas N; Perelshtein I; Lipovsky A
    Curr Med Chem; 2018; 25(41):5739-5754. PubMed ID: 29284390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MALDI MS analysis, disk diffusion and optical density measurements for the antimicrobial effect of zinc oxide nanorods integrated in graphene oxide nanostructures.
    Bhaisare ML; Wu BS; Wu MC; Khan MS; Tseng MH; Wu HF
    Biomater Sci; 2016 Jan; 4(1):183-94. PubMed ID: 26575840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses.
    Khezerlou A; Alizadeh-Sani M; Azizi-Lalabadi M; Ehsani A
    Microb Pathog; 2018 Oct; 123():505-526. PubMed ID: 30092260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal oxide nanoparticles as antimicrobial agents: a promise for the future.
    Raghunath A; Perumal E
    Int J Antimicrob Agents; 2017 Feb; 49(2):137-152. PubMed ID: 28089172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticles: Alternatives Against Drug-Resistant Pathogenic Microbes.
    Rudramurthy GR; Swamy MK; Sinniah UR; Ghasemzadeh A
    Molecules; 2016 Jun; 21(7):. PubMed ID: 27355939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial and biocompatible properties of nanomaterials.
    Ul-Islam M; Shehzad A; Khan S; Khattak WA; Ullah MW; Park JK
    J Nanosci Nanotechnol; 2014 Jan; 14(1):780-91. PubMed ID: 24730297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalization of Inorganic Nanoparticles to Augment Antimicrobial Efficiency: A Critical Analysis.
    Khan K; Javed S
    Curr Pharm Biotechnol; 2018; 19(7):523-536. PubMed ID: 30062962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: Current status.
    Khan ST; Musarrat J; Al-Khedhairy AA
    Colloids Surf B Biointerfaces; 2016 Oct; 146():70-83. PubMed ID: 27259161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.