BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 28952476)

  • 1. Freeze Drying Improves the Shelf-Life of Conductive Polymer Modified Neural Electrodes.
    Mandal HS; Cliff RO; Pancrazio JJ
    Bioengineering (Basel); 2015 Aug; 2(3):176-183. PubMed ID: 28952476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly (3, 4-ethylenedioxythiophene)-ionic liquid coating improves neural recording and stimulation functionality of MEAs.
    Du ZJ; Luo X; Weaver C; Cui XT
    J Mater Chem C Mater; 2015 Jul; 3(25):6515-6524. PubMed ID: 26491540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning Microelectrodes' Impedance to Improve Fast Ripples Recording.
    Mousavi H; Dauly G; Dieuset G; El Merhie A; Ismailova E; Wendling F; Al Harrach M
    Bioengineering (Basel); 2024 Jan; 11(1):. PubMed ID: 38275582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Properties of PEDOT:PSS/Graphene Conductive Layers in Artificial Sweat.
    Tzaneva B; Aleksandrova M; Mateev V; Stefanov B; Iliev I
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PEDOT:PSS-coated platinum electrodes for neural stimulation.
    Dijk G; Pas J; Markovic K; Scancar J; O'Connor RP
    APL Bioeng; 2023 Dec; 7(4):046117. PubMed ID: 38075207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double Electrode Experiments Reveal the Processes Occurring at PEDOT-Coated Neural Electrode Arrays.
    Zhang Y; Chen Y; Contera S; Compton RG
    ACS Appl Mater Interfaces; 2024 Jun; 16(22):29439-29452. PubMed ID: 38775098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-demand electrically controlled melatonin release from PEDOT/SNP composite improves quality of chronic neural recording.
    Zhu Y; Yang Y; Ni G; Li S; Liu W; Gao Z; Zhang X; Zhang Q; Wang C; Zhou J
    Front Bioeng Biotechnol; 2023; 11():1284927. PubMed ID: 38033812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of PEDOT:PSS Brushes Grafted from Gold Using ATRP for Increased Electrochemical and Mechanical Stability.
    Tuermer-Lee JX; Lim A; Ah L; Blau R; Qie Y; Shipley W; Kayser LV; Russman SM; Tao AR; Dayeh SA; Lipomi DJ
    ACS Macro Lett; 2023 Dec; 12(12):1718-1726. PubMed ID: 38052039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of in vivo electrophysiology and optogenetics in rodents with PEDOT:PSS neural electrode array.
    Cho YU; Lee JY; Yu KJ
    STAR Protoc; 2024 Mar; 5(1):102909. PubMed ID: 38427565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pHEMA Encapsulated PEDOT-PSS-CNT Microsphere Microelectrodes for Recording Single Unit Activity in the Brain.
    Castagnola E; Maggiolini E; Ceseracciu L; Ciarpella F; Zucchini E; De Faveri S; Fadiga L; Ricci D
    Front Neurosci; 2016; 10():151. PubMed ID: 27147944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(3,4-Ethylenedioxythiophene)/Functional Gold Nanoparticle films for Improving the Electrode-Neural Interface.
    Wu Y; Wang L; Yan M; Wang X; Liao X; Zhong C; Ke D; Lu Y
    Adv Healthc Mater; 2024 May; ():e2400836. PubMed ID: 38757738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical Investigation of PEDOT:PSS/Graphene Aging in Artificial Sweat.
    Tzaneva B; Mateev V; Stefanov B; Aleksandrova M; Iliev I
    Polymers (Basel); 2024 Jun; 16(12):. PubMed ID: 38932055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic Spray Coating to Optimize Performance of Bio-Electrochemical Systems.
    Spisni G; Massaglia G; Pirri FC; Bianco S; Quaglio M
    Nanomaterials (Basel); 2023 Nov; 13(22):. PubMed ID: 37999281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soft, Conductive, Brain-Like, Coatings at Tips of Microelectrodes Improve Electrical Stability under Chronic, In Vivo Conditions.
    Sridharan A; Muthuswamy J
    Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34203234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully flexible implantable neural probes for electrophysiology recording and controlled neurochemical modulation.
    Malekoshoaraie MH; Wu B; Krahe DD; Ahmed Z; Pupa S; Jain V; Cui XT; Chamanzar M
    Microsyst Nanoeng; 2024; 10():91. PubMed ID: 38947533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compressible sponge electrodes by oxidative molecular layer deposition (oMLD) of polyethylenedioxythiophene (PEDOT) onto open-cell polyurethane sponges.
    Mehregan M; Stalla D; Luebbert G; Baratta L; Brathwaite KG; Wyatt QK; Paranamana NC; Young MJ
    Nanotechnology; 2023 Sep; 34(46):. PubMed ID: 37567164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible silk-fibroin-based microelectrode arrays for high-resolution neural recording.
    Ding J; Zeng M; Tian Y; Chen Z; Qiao Z; Xiao Z; Wu C; Wei D; Sun J; Fan H
    Mater Horiz; 2024 Jun; ():. PubMed ID: 38919990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Impedance 3D PEDOT:PSS Ultramicroelectrodes.
    Jones PD; Moskalyuk A; Barthold C; Gutöhrlein K; Heusel G; Schröppel B; Samba R; Giugliano M
    Front Neurosci; 2020; 14():405. PubMed ID: 32508562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The selective flow of volatile organic compounds in conductive polymer-coated microchannels.
    Hossein-Babaei F; Hooshyar Zare A
    Sci Rep; 2017 Feb; 7():42299. PubMed ID: 28205561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite-element modeling of neuromodulation via controlled delivery of potassium ions using conductive polymer-coated microelectrodes.
    Verardo C; Mele LJ; Selmi L; Palestri P
    J Neural Eng; 2024 Mar; 21(2):. PubMed ID: 38306702
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.