These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 28952506)

  • 1. The Separation of Blood Components Using Standing Surface Acoustic Waves (SSAWs) Microfluidic Devices: Analysis and Simulation.
    Soliman AM; Eldosoky MA; Taha TE
    Bioengineering (Basel); 2017 Mar; 4(2):. PubMed ID: 28952506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustophoretic Control of Microparticle Transport Using Dual-Wavelength Surface Acoustic Wave Devices.
    Hsu JC; Hsu CH; Huang YW
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30642118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simplified three-dimensional numerical simulation approach for surface acoustic wave tweezers.
    Liu L; Zhou J; Tan K; Zhang H; Yang X; Duan H; Fu Y
    Ultrasonics; 2022 Sep; 125():106797. PubMed ID: 35780714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revised model for the radiation force exerted by standing surface acoustic waves on a rigid cylinder.
    Liang S; Chaohui W
    Phys Rev E; 2018 Mar; 97(3-1):033103. PubMed ID: 29776072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influences of microparticle radius and microchannel height on SSAW-based acoustophoretic aggregation.
    Dong J; Liang D; Yang X; Sun C
    Ultrasonics; 2021 Dec; 117():106547. PubMed ID: 34419898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Simulated Investigation of Lithium Niobate Orientation Effects on Standing Acoustic Waves.
    Janardhana RD; Jackson N
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation on submicron particle separation and deflection using tilted-angle standing surface acoustic wave microfluidics.
    Peng T; Lin X; Li L; Huang L; Jiang B; Jia Y
    Heliyon; 2024 Feb; 10(3):e25042. PubMed ID: 38322952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Particle Accumulation in a Microchannel and Its Reduction by a Standing Surface Acoustic Wave (SSAW).
    Sriphutkiat Y; Zhou Y
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28067852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW).
    Shi J; Huang H; Stratton Z; Huang Y; Huang TJ
    Lab Chip; 2009 Dec; 9(23):3354-9. PubMed ID: 19904400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D numerical simulation of acoustophoretic motion induced by boundary-driven acoustic streaming in standing surface acoustic wave microfluidics.
    Namnabat MS; Moghimi Zand M; Houshfar E
    Sci Rep; 2021 Jun; 11(1):13326. PubMed ID: 34172758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle separation in microfluidics using different modal ultrasonic standing waves.
    Zhang Y; Chen X
    Ultrason Sonochem; 2021 Jul; 75():105603. PubMed ID: 34044322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical Study of Particle Separation through Integrated Multi-Stage Surface Acoustic Waves and Modulated Driving Signals.
    Jiang Y; Chen J; Xuan W; Liang Y; Huang X; Cao Z; Sun L; Dong S; Luo J
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bubble-Enhanced Mixing Induced by Standing Surface Acoustic Waves (SSAWs) in Microchannel.
    Zhang J; Zheng T; Tang L; Qi H; Wu X; Zhu L
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sheathless size-based acoustic particle separation.
    Guldiken R; Jo MC; Gallant ND; Demirci U; Zhe J
    Sensors (Basel); 2012; 12(1):905-22. PubMed ID: 22368502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiation dominated acoustophoresis driven by surface acoustic waves.
    Guo J; Kang Y; Ai Y
    J Colloid Interface Sci; 2015 Oct; 455():203-11. PubMed ID: 26070191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and numerical studies on standing surface acoustic wave microfluidics.
    Mao Z; Xie Y; Guo F; Ren L; Huang PH; Chen Y; Rufo J; Costanzo F; Huang TJ
    Lab Chip; 2016 Feb; 16(3):515-24. PubMed ID: 26698361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The complexity of surface acoustic wave fields used for microfluidic applications.
    Weser R; Winkler A; Weihnacht M; Menzel S; Schmidt H
    Ultrasonics; 2020 Aug; 106():106160. PubMed ID: 32334142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blood platelet enrichment in mass-producible surface acoustic wave (SAW) driven microfluidic chips.
    Richard C; Fakhfouri A; Colditz M; Striggow F; Kronstein-Wiedemann R; Tonn T; Medina-Sánchez M; Schmidt OG; Gemming T; Winkler A
    Lab Chip; 2019 Dec; 19(24):4043-4051. PubMed ID: 31723953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional modeling and experimentation of microfluidic devices driven by surface acoustic wave.
    Liu X; Zheng T; Wang C
    Ultrasonics; 2023 Mar; 129():106914. PubMed ID: 36577304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization Analysis of Particle Separation Parameters for a Standing Surface Acoustic Wave Acoustofluidic Chip.
    Han J; Hu H; Lei Y; Huang Q; Fu C; Gai C; Ning J
    ACS Omega; 2023 Jan; 8(1):311-323. PubMed ID: 36643460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.