These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 28952506)
21. Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves. Ai Y; Sanders CK; Marrone BL Anal Chem; 2013 Oct; 85(19):9126-34. PubMed ID: 23968497 [TBL] [Abstract][Full Text] [Related]
22. Design and simulation of a microfluidic device for acoustic cell separation. Shamloo A; Boodaghi M Ultrasonics; 2018 Mar; 84():234-243. PubMed ID: 29175517 [TBL] [Abstract][Full Text] [Related]
23. Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW). Shi J; Yazdi S; Lin SC; Ding X; Chiang IK; Sharp K; Huang TJ Lab Chip; 2011 Jul; 11(14):2319-24. PubMed ID: 21709881 [TBL] [Abstract][Full Text] [Related]
24. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part II. Sachs S; Cierpka C; König J Lab Chip; 2022 May; 22(10):2028-2040. PubMed ID: 35485185 [TBL] [Abstract][Full Text] [Related]
25. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part I. Sachs S; Baloochi M; Cierpka C; König J Lab Chip; 2022 May; 22(10):2011-2027. PubMed ID: 35482303 [TBL] [Abstract][Full Text] [Related]
26. The importance of travelling wave components in standing surface acoustic wave (SSAW) systems. Devendran C; Albrecht T; Brenker J; Alan T; Neild A Lab Chip; 2016 Sep; 16(19):3756-3766. PubMed ID: 27722363 [TBL] [Abstract][Full Text] [Related]
27. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel. Nam J; Lim H; Kim D; Shin S Lab Chip; 2011 Oct; 11(19):3361-4. PubMed ID: 21842070 [TBL] [Abstract][Full Text] [Related]
28. A Hybrid Spiral Microfluidic Platform Coupled with Surface Acoustic Waves for Circulating Tumor Cell Sorting and Separation: A Numerical Study. Altay R; Yapici MK; Koşar A Biosensors (Basel); 2022 Mar; 12(3):. PubMed ID: 35323441 [TBL] [Abstract][Full Text] [Related]
29. Vertical Hydrodynamic Focusing and Continuous Acoustofluidic Separation of Particles via Upward Migration. Ahmed H; Destgeer G; Park J; Jung JH; Sung HJ Adv Sci (Weinh); 2018 Feb; 5(2):1700285. PubMed ID: 29619294 [TBL] [Abstract][Full Text] [Related]
30. A microfluidic chip with a serpentine channel enabling high-throughput cell separation using surface acoustic waves. Ning S; Liu S; Xiao Y; Zhang G; Cui W; Reed M Lab Chip; 2021 Nov; 21(23):4608-4617. PubMed ID: 34763349 [TBL] [Abstract][Full Text] [Related]
32. Numerical Modeling Using Immersed Boundary-Lattice Boltzmann Method and Experiments for Particle Manipulation under Standing Surface Acoustic Waves. Alshehhi F; Waheed W; Al-Ali A; Abu-Nada E; Alazzam A Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838066 [TBL] [Abstract][Full Text] [Related]
33. Numerical analysis of wave generation and propagation in a focused surface acoustic wave device for potential microfluidics applications. Sankaranarayanan SK; Bhethanabotla VR IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):631-43. PubMed ID: 19411221 [TBL] [Abstract][Full Text] [Related]
34. Sheathless Focusing and Separation of Microparticles Using Tilted-Angle Traveling Surface Acoustic Waves. Ahmed H; Destgeer G; Park J; Afzal M; Sung HJ Anal Chem; 2018 Jul; 90(14):8546-8552. PubMed ID: 29911381 [TBL] [Abstract][Full Text] [Related]
35. Microfluidic Particle Separation and Detection System Based on Standing Surface Acoustic Wave and Lensless Imaging. Chen J; Huang X; Xu X; Wang R; Wei M; Han W; Cao J; Xuan W; Ge Y; Wang J; Sun L; Luo JK IEEE Trans Biomed Eng; 2022 Jul; 69(7):2165-2175. PubMed ID: 34951837 [TBL] [Abstract][Full Text] [Related]
36. Measurement of the Thermal Effect of Standing Surface Acoustic Waves in Microchannel by Fluoresence Intensity. Li Y; Wei S; Zheng T Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442556 [TBL] [Abstract][Full Text] [Related]
37. Microfluidic acoustic sawtooth metasurfaces for patterning and separation using traveling surface acoustic waves. Xu M; Lee PVS; Collins DJ Lab Chip; 2021 Dec; 22(1):90-99. PubMed ID: 34860222 [TBL] [Abstract][Full Text] [Related]
38. Density-dependent separation of encapsulated cells in a microfluidic channel by using a standing surface acoustic wave. Nam J; Lim H; Kim C; Yoon Kang J; Shin S Biomicrofluidics; 2012 Jun; 6(2):24120-2412010. PubMed ID: 22670167 [TBL] [Abstract][Full Text] [Related]
39. Tritoroidal particle rings formation in open microfluidics induced by standing surface acoustic waves. Zheng T; Wang C; Xu C Electrophoresis; 2020 Jun; 41(10-11):983-990. PubMed ID: 32056225 [TBL] [Abstract][Full Text] [Related]
40. Theory of acoustophoresis in counterpropagating surface acoustic wave fields for particle separation. Liu Z; Xu G; Ni Z; Chen X; Guo X; Tu J; Zhang D Phys Rev E; 2021 Mar; 103(3-1):033104. PubMed ID: 33862812 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]