These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 28952506)

  • 41. Acoustic Manipulation of Bio-Particles at High Frequencies: An Analytical and Simulation Approach.
    Samandari M; Abrinia K; Sanati-Nezhad A
    Micromachines (Basel); 2017 Sep; 8(10):. PubMed ID: 30400480
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Virtual membrane for filtration of particles using surface acoustic waves (SAW).
    Fakhfouri A; Devendran C; Collins DJ; Ai Y; Neild A
    Lab Chip; 2016 Sep; 16(18):3515-23. PubMed ID: 27458086
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tunable and label-free bacteria alignment using standing surface acoustic waves.
    Toru S; Frenea-Robin M; Haddour N; Buret F
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4998-5001. PubMed ID: 23367050
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Particle separation by phase modulated surface acoustic waves.
    Simon G; Andrade MAB; Reboud J; Marques-Hueso J; Desmulliez MPY; Cooper JM; Riehle MO; Bernassau AL
    Biomicrofluidics; 2017 Sep; 11(5):054115. PubMed ID: 29152026
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Separation of 300 and 100 nm Particles in Fabry-Perot Acoustofluidic Resonators.
    Sehgal P; Kirby BJ
    Anal Chem; 2017 Nov; 89(22):12192-12200. PubMed ID: 29039191
    [TBL] [Abstract][Full Text] [Related]  

  • 46. One-dimensional acoustic potential landscapes guide the neurite outgrowth and affect the viability of B35 neuroblastoma cells.
    Baumgartner K; Mauritz SCF; Angermann S; Brugger MS; Westerhausen C
    Phys Biol; 2022 Jun; 19(4):. PubMed ID: 35580580
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Acoustofluidics and whole-blood manipulation in surface acoustic wave counterflow devices.
    Travagliati M; Shilton RJ; Pagliazzi M; Tonazzini I; Beltram F; Cecchini M
    Anal Chem; 2014 Nov; 86(21):10633-8. PubMed ID: 25260018
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Continuous enrichment of low-abundance cell samples using standing surface acoustic waves (SSAW).
    Chen Y; Li S; Gu Y; Li P; Ding X; Wang L; McCoy JP; Levine SJ; Huang TJ
    Lab Chip; 2014 Mar; 14(5):924-30. PubMed ID: 24413889
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Polydimethylsiloxane-LiNbO3 surface acoustic wave micropump devices for fluid control into microchannels.
    Girardo S; Cecchini M; Beltram F; Cingolani R; Pisignano D
    Lab Chip; 2008 Sep; 8(9):1557-63. PubMed ID: 18818813
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves.
    Destgeer G; Sung HJ
    Lab Chip; 2015 Jul; 15(13):2722-38. PubMed ID: 26016538
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dielectrophoretic separation of platelet cells in a microfluidic channel and optimization with fuzzy logic.
    Ertugrul I; Ulkir O
    RSC Adv; 2020 Sep; 10(56):33731-33738. PubMed ID: 35519028
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microparticle Manipulation by Standing Surface Acoustic Waves with Dual-frequency Excitations.
    Zhou Y; Sriphutkiat Y
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30199023
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Two-stage particle separation channel based on standing surface acoustic wave.
    Lv H; Chen X; Zhang Y; Wang X; Zeng X; Zhang D
    J Microsc; 2022 Apr; 286(1):42-54. PubMed ID: 35179787
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW).
    Shi J; Mao X; Ahmed D; Colletti A; Huang TJ
    Lab Chip; 2008 Feb; 8(2):221-3. PubMed ID: 18231658
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cell separation using tilted-angle standing surface acoustic waves.
    Ding X; Peng Z; Lin SC; Geri M; Li S; Li P; Chen Y; Dao M; Suresh S; Huang TJ
    Proc Natl Acad Sci U S A; 2014 Sep; 111(36):12992-7. PubMed ID: 25157150
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Continuous particle separation in spiral microchannels using Dean flows and differential migration.
    Bhagat AA; Kuntaegowdanahalli SS; Papautsky I
    Lab Chip; 2008 Nov; 8(11):1906-14. PubMed ID: 18941692
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment.
    Sankaranarayanan SK; Cular S; Bhethanabotla VR; Joseph B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066308. PubMed ID: 18643372
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Acoustic wave based MEMS devices for biosensing applications.
    Voiculescu I; Nordin AN
    Biosens Bioelectron; 2012 Mar; 33(1):1-9. PubMed ID: 22310157
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gravitational field flow fractionation: Enhancing the resolution power by using an acoustic force field.
    Hwang JY; Youn S; Yang IH
    Anal Chim Acta; 2019 Jan; 1047():238-247. PubMed ID: 30567656
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The patterning mechanism of carbon nanotubes using surface acoustic waves: the acoustic radiation effect or the dielectrophoretic effect.
    Ma Z; Guo J; Liu YJ; Ai Y
    Nanoscale; 2015 Sep; 7(33):14047-54. PubMed ID: 26239679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.