These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
63. Frequency dependence of surface acoustic wave swimming. Pouya C; Hoggard K; Gossage SH; Peter HR; Poole T; Nash GR J R Soc Interface; 2019 Jun; 16(155):20190113. PubMed ID: 31213171 [TBL] [Abstract][Full Text] [Related]
64. 3D measurement and simulation of surface acoustic wave driven fluid motion: a comparison. Kiebert F; Wege S; Massing J; König J; Cierpka C; Weser R; Schmidt H Lab Chip; 2017 Jun; 17(12):2104-2114. PubMed ID: 28540945 [TBL] [Abstract][Full Text] [Related]
65. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906 [TBL] [Abstract][Full Text] [Related]
66. A Label Free Disposable Device for Rapid Isolation of Rare Tumor Cells from Blood by Ultrasounds. González I; Earl J; Fernández LJ; Sainz B; Pinto A; Monge R; Alcalá S; Castillejo A; Soto JL; Carrato A Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424062 [TBL] [Abstract][Full Text] [Related]
67. Integrated active mixing and biosensing using surface acoustic waves (SAW) and surface plasmon resonance (SPR) on a common substrate. Renaudin A; Chabot V; Grondin E; Aimez V; Charette PG Lab Chip; 2010 Jan; 10(1):111-5. PubMed ID: 20024058 [TBL] [Abstract][Full Text] [Related]
68. Detachable Acoustofluidic System for Particle Separation via a Traveling Surface Acoustic Wave. Ma Z; Collins DJ; Ai Y Anal Chem; 2016 May; 88(10):5316-23. PubMed ID: 27086552 [TBL] [Abstract][Full Text] [Related]
69. Standing Surface Acoustic Wave (SSAW)-Based Fluorescence-Activated Cell Sorter. Ren L; Yang S; Zhang P; Qu Z; Mao Z; Huang PH; Chen Y; Wu M; Wang L; Li P; Huang TJ Small; 2018 Oct; 14(40):e1801996. PubMed ID: 30168662 [TBL] [Abstract][Full Text] [Related]
70. Fabrication and Operation of Acoustofluidic Devices Supporting Bulk Acoustic Standing Waves for Sheathless Focusing of Particles. Shields CW; Cruz DF; Ohiri KA; Yellen BB; Lopez GP J Vis Exp; 2016 Mar; (109):. PubMed ID: 27022681 [TBL] [Abstract][Full Text] [Related]
72. Neural Network-Based Optimization of an Acousto Microfluidic System for Submicron Bioparticle Separation. Talebjedi B; Heydari M; Taatizadeh E; Tasnim N; Li ITS; Hoorfar M Front Bioeng Biotechnol; 2022; 10():878398. PubMed ID: 35519621 [TBL] [Abstract][Full Text] [Related]
73. Acoustic fields and microfluidic patterning around embedded micro-structures subject to surface acoustic waves. Collins DJ; O'Rorke R; Neild A; Han J; Ai Y Soft Matter; 2019 Nov; 15(43):8691-8705. PubMed ID: 31657435 [TBL] [Abstract][Full Text] [Related]
74. Acoustic Microfluidic Separation Techniques and Bioapplications: A Review. Gao Y; Wu M; Lin Y; Xu J Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33023173 [TBL] [Abstract][Full Text] [Related]
75. High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics. Zhang J; Yuan D; Sluyter R; Yan S; Zhao Q; Xia H; Tan SH; Nguyen NT; Li W IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1422-1430. PubMed ID: 28866599 [TBL] [Abstract][Full Text] [Related]
76. Power-controlled acoustofluidic manipulation of microparticles. Wu F; Wang H; Sun C; Yuan F; Xie Z; Mikhaylov R; Wu Z; Shen M; Yang J; Evans W; Fu Y; Tian L; Yang X Ultrasonics; 2023 Sep; 134():107087. PubMed ID: 37406388 [TBL] [Abstract][Full Text] [Related]
77. Manipulation of Particle/Cell Based on Compressibility in a Divergent Microchannel by Surface Acoustic Wave. Xue S; Xu Q; Xu Z; Zhang X; Zhang H; Zhang X; He F; Chen Y; Xue Y; Hao P Anal Chem; 2023 Mar; 95(9):4282-4290. PubMed ID: 36815437 [TBL] [Abstract][Full Text] [Related]
78. Particle separation by a moving air-liquid interface in a microchannel. Wang F; Chon CH; Li D J Colloid Interface Sci; 2010 Dec; 352(2):580-4. PubMed ID: 20851407 [TBL] [Abstract][Full Text] [Related]
79. Experimental research on surface acoustic wave microfluidic atomization for drug delivery. Huang QY; Le Y; Hu H; Wan ZJ; Ning J; Han JL Sci Rep; 2022 May; 12(1):7930. PubMed ID: 35562384 [TBL] [Abstract][Full Text] [Related]
80. Acoustic tweezing of particles using decaying opposing travelling surface acoustic waves (DOTSAW). Ng JW; Devendran C; Neild A Lab Chip; 2017 Oct; 17(20):3489-3497. PubMed ID: 28929163 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]