These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 28952507)

  • 1. Lagrangian Trajectories to Predict the Formation of Population Heterogeneity in Large-Scale Bioreactors.
    Kuschel M; Siebler F; Takors R
    Bioengineering (Basel); 2017 Mar; 4(2):. PubMed ID: 28952507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data-driven in silico prediction of regulation heterogeneity and ATP demands of Escherichia coli in large-scale bioreactors.
    Zieringer J; Wild M; Takors R
    Biotechnol Bioeng; 2021 Jan; 118(1):265-278. PubMed ID: 32940924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupled metabolic-hydrodynamic modeling enabling rational scale-up of industrial bioprocesses.
    Wang G; Haringa C; Tang W; Noorman H; Chu J; Zhuang Y; Zhang S
    Biotechnol Bioeng; 2020 Mar; 117(3):844-867. PubMed ID: 31814101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistically applying 1-D modeling and CFD for designing industrial scale bubble column syngas bioreactors.
    Siebler F; Lapin A; Takors R
    Eng Life Sci; 2020 Jul; 20(7):239-251. PubMed ID: 32647503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulated oxygen and glucose gradients as a prerequisite for predicting industrial scale performance a priori.
    Kuschel M; Takors R
    Biotechnol Bioeng; 2020 Sep; 117(9):2760-2770. PubMed ID: 32530496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An analysis of organism lifelines in an industrial bioreactor using Lattice-Boltzmann CFD.
    Haringa C
    Eng Life Sci; 2023 Jan; 23(1):e2100159. PubMed ID: 36619885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stochastic parcel tracking in an Euler-Lagrange compartment model for fast simulation of fermentation processes.
    Haringa C; Tang W; Noorman HJ
    Biotechnol Bioeng; 2022 Jul; 119(7):1849-1860. PubMed ID: 35352339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CFD simulation of an unbaffled stirred tank reactor driven by a magnetic rod: assessment of turbulence models.
    Li J; Deng B; Zhang B; Shen X; Kim CN
    Water Sci Technol; 2015; 72(8):1308-18. PubMed ID: 26465300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental validation of in silico estimated biomass yields of Pseudomonas putida KT2440.
    Hintermayer SB; Weuster-Botz D
    Biotechnol J; 2017 Jun; 12(6):. PubMed ID: 28294579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Euler-Lagrange CFD modelling of unconfined gas mixing in anaerobic digestion.
    Dapelo D; Alberini F; Bridgeman J
    Water Res; 2015 Nov; 85():497-511. PubMed ID: 26379205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New milliliter-scale stirred tank bioreactors for the cultivation of mycelium forming microorganisms.
    Hortsch R; Stratmann A; Weuster-Botz D
    Biotechnol Bioeng; 2010 Jun; 106(3):443-51. PubMed ID: 20198653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterising the two-phase flow and mixing performance in a gas-mixed anaerobic digester: Importance for scaled-up applications.
    Wei P; Mudde RF; Uijttewaal W; Spanjers H; van Lier JB; de Kreuk M
    Water Res; 2019 Feb; 149():86-97. PubMed ID: 30419470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production.
    Ding J; Wang X; Zhou XF; Ren NQ; Guo WQ
    Bioresour Technol; 2010 Sep; 101(18):7016-24. PubMed ID: 20427177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Verification of energy dissipation rate scalability in pilot and production scale bioreactors using computational fluid dynamics.
    Johnson C; Natarajan V; Antoniou C
    Biotechnol Prog; 2014; 30(3):760-4. PubMed ID: 24616386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Euler-Lagrange computational fluid dynamics for (bio)reactor scale down: An analysis of organism lifelines.
    Haringa C; Tang W; Deshmukh AT; Xia J; Reuss M; Heijnen JJ; Mudde RF; Noorman HJ
    Eng Life Sci; 2016 Oct; 16(7):652-663. PubMed ID: 27917102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Process performance of parallel bioreactors for batch cultivation of Streptomyces tendae.
    Hortsch R; Krispin H; Weuster-Botz D
    Bioprocess Biosyst Eng; 2011 Mar; 34(3):297-304. PubMed ID: 20931236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of flow conditions in 2 L and 20 L wave bioreactors using computational fluid dynamics.
    Oncül AA; Kalmbach A; Genzel Y; Reichl U; Thévenin D
    Biotechnol Prog; 2010; 26(1):101-10. PubMed ID: 19918766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of computational fluid dynamics to closed-loop bioreactors: I. Characterization and simulation of fluid-flow pattern and oxygen transfer.
    Littleton HX; Daigger GT; Strom PF
    Water Environ Res; 2007 Jun; 79(6):600-12. PubMed ID: 17605329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-performance recombinant protein production with Escherichia coli in continuously operated cascades of stirred-tank reactors.
    Schmideder A; Weuster-Botz D
    J Ind Microbiol Biotechnol; 2017 Jul; 44(7):1021-1029. PubMed ID: 28251388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.