BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 28952534)

  • 1. Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production.
    Kourmentza C; Plácido J; Venetsaneas N; Burniol-Figols A; Varrone C; Gavala HN; Reis MAM
    Bioengineering (Basel); 2017 Jun; 4(2):. PubMed ID: 28952534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner.
    Koller M; Maršálek L; de Sousa Dias MM; Braunegg G
    N Biotechnol; 2017 Jul; 37(Pt A):24-38. PubMed ID: 27184617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methodological issues in life cycle assessment of mixed-culture polyhydroxyalkanoate production utilising waste as feedstock.
    Heimersson S; Morgan-Sagastume F; Peters GM; Werker A; Svanström M
    N Biotechnol; 2014 Jun; 31(4):383-93. PubMed ID: 24121250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Bacterial Polyhydroalkanoate (PHA) in a Sustainable Future: A Review on the Biological Diversity.
    Vicente D; Proença DN; Morais PV
    Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36833658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioprocess Engineering Aspects of Sustainable Polyhydroxyalkanoate Production in Cyanobacteria.
    Kamravamanesh D; Lackner M; Herwig C
    Bioengineering (Basel); 2018 Dec; 5(4):. PubMed ID: 30567391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Waste to bioplastics: How close are we to sustainable polyhydroxyalkanoates production?
    Khatami K; Perez-Zabaleta M; Owusu-Agyeman I; Cetecioglu Z
    Waste Manag; 2021 Jan; 119():374-388. PubMed ID: 33139190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: from the substrate to the final product.
    Dias JM; Lemos PC; Serafim LS; Oliveira C; Eiroa M; Albuquerque MG; Ramos AM; Oliveira R; Reis MA
    Macromol Biosci; 2006 Nov; 6(11):885-906. PubMed ID: 17099863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyhydroxyalkanoates biopolymers toward decarbonizing economy and sustainable future.
    Rekhi P; Goswami M; Ramakrishna S; Debnath M
    Crit Rev Biotechnol; 2022 Aug; 42(5):668-692. PubMed ID: 34645360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural and engineered polyhydroxyalkanoate (PHA) synthase: key enzyme in biopolyester production.
    Zou H; Shi M; Zhang T; Li L; Li L; Xian M
    Appl Microbiol Biotechnol; 2017 Oct; 101(20):7417-7426. PubMed ID: 28884324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in Polyhydroxyalkanoate (PHA) Production.
    Koller M
    Bioengineering (Basel); 2017 Nov; 4(4):. PubMed ID: 29099065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of polyhydroxyalkanoates production from waste feedstocks and applications.
    Pakalapati H; Chang CK; Show PL; Arumugasamy SK; Lan JC
    J Biosci Bioeng; 2018 Sep; 126(3):282-292. PubMed ID: 29803402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategies for efficiently selecting PHA producing mixed microbial cultures using complex feedstocks: Feast and famine regime and uncoupled carbon and nitrogen availabilities.
    Oliveira CS; Silva CE; Carvalho G; Reis MA
    N Biotechnol; 2017 Jul; 37(Pt A):69-79. PubMed ID: 27793692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria.
    Nikodinovic-Runic J; Guzik M; Kenny ST; Babu R; Werker A; O Connor KE
    Adv Appl Microbiol; 2013; 84():139-200. PubMed ID: 23763760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of nitrogen feeding regulation on polyhydroxyalkanoates production by mixed microbial cultures.
    Silva F; Campanari S; Matteo S; Valentino F; Majone M; Villano M
    N Biotechnol; 2017 Jul; 37(Pt A):90-98. PubMed ID: 27457131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial polyhydroxyalkanoates: Still fabulous?
    Możejko-Ciesielska J; Kiewisz R
    Microbiol Res; 2016 Nov; 192():271-282. PubMed ID: 27664746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustainable PHA production in integrated lignocellulose biorefineries.
    Dietrich K; Dumont MJ; Del Rio LF; Orsat V
    N Biotechnol; 2019 Mar; 49():161-168. PubMed ID: 30465907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of polyhydroxyalkanoate from palm oil and some new applications.
    Sudesh K; Bhubalan K; Chuah JA; Kek YK; Kamilah H; Sridewi N; Lee YF
    Appl Microbiol Biotechnol; 2011 Mar; 89(5):1373-86. PubMed ID: 21279347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crude glycerol as feedstock for polyhydroxyalkanoates production by mixed microbial cultures.
    Moita R; Freches A; Lemos PC
    Water Res; 2014 Jul; 58():9-20. PubMed ID: 24731872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotransformation of volatile fatty acids to polyhydroxyalkanoates by employing mixed microbial consortia: The effect of pH and carbon source.
    Kourmentza C; Kornaros M
    Bioresour Technol; 2016 Dec; 222():388-398. PubMed ID: 27744164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent developments in Polyhydroxyalkanoates (PHAs) production - A review.
    Sabapathy PC; Devaraj S; Meixner K; Anburajan P; Kathirvel P; Ravikumar Y; Zabed HM; Qi X
    Bioresour Technol; 2020 Jun; 306():123132. PubMed ID: 32220472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.