BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 28952534)

  • 21. Substrate versatility of polyhydroxyalkanoate producing glycerol grown bacterial enrichment culture.
    Moralejo-Gárate H; Kleerebezem R; Mosquera-Corral A; Campos JL; Palmeiro-Sánchez T; van Loosdrecht MCM
    Water Res; 2014 Dec; 66():190-198. PubMed ID: 25213684
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polyhydroxyalkanoate synthesis by mixed microbial consortia cultured on fermented dairy manure: Effect of aeration on process rates/yields and the associated microbial ecology.
    Coats ER; Watson BS; Brinkman CK
    Water Res; 2016 Dec; 106():26-40. PubMed ID: 27697682
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial-Derived Polyhydroxyalkanoate-Based Scaffolds for Bone Tissue Engineering: Biosynthesis, Properties, and Perspectives.
    Li J; Zhang X; Udduttula A; Fan ZS; Chen JH; Sun AR; Zhang P
    Front Bioeng Biotechnol; 2021; 9():763031. PubMed ID: 34993185
    [TBL] [Abstract][Full Text] [Related]  

  • 24.
    Colpa DI; Zhou W; Wempe JP; Tamis J; Stuart MCA; Krooneman J; Euverink GW
    Bioengineering (Basel); 2020 Feb; 7(1):. PubMed ID: 32098069
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing.
    Kosseva MR; Rusbandi E
    Int J Biol Macromol; 2018 Feb; 107(Pt A):762-778. PubMed ID: 28928063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Whey valorization for sustainable polyhydroxyalkanoate production by Bacillus megaterium: Production, characterization and in vitro biocompatibility evaluation.
    Israni N; Venkatachalam P; Gajaraj B; Varalakshmi KN; Shivakumar S
    J Environ Manage; 2020 Feb; 255():109884. PubMed ID: 32063322
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced polyhydroxyalkanoate production by mixed microbial culture with extended cultivation strategy.
    Huang L; Chen Z; Wen Q; Lee DJ
    Bioresour Technol; 2017 Oct; 241():802-811. PubMed ID: 28628985
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biotechnology for Chemical Production: Challenges and Opportunities.
    Burk MJ; Van Dien S
    Trends Biotechnol; 2016 Mar; 34(3):187-190. PubMed ID: 26683567
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substrate strategy optimization for polyhydroxyalkanoates producing culture enrichment from crude glycerol.
    Wen Q; Liu B; Li F; Chen Z
    Bioresour Technol; 2020 Sep; 311():123516. PubMed ID: 32428849
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strategies for PHA production by mixed cultures and renewable waste materials.
    Serafim LS; Lemos PC; Albuquerque MG; Reis MA
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):615-28. PubMed ID: 19002455
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production.
    Kumar G; Ponnusamy VK; Bhosale RR; Shobana S; Yoon JJ; Bhatia SK; Rajesh Banu J; Kim SH
    Bioresour Technol; 2019 Sep; 287():121427. PubMed ID: 31104939
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advances in Polyhydroxyalkanoate (PHA) Production, Volume 3.
    Koller M
    Bioengineering (Basel); 2022 Jul; 9(7):. PubMed ID: 35877379
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic change of pH in acidogenic fermentation of cheese whey towards polyhydroxyalkanoates production: Impact on performance and microbial population.
    Gouveia AR; Freitas EB; Galinha CF; Carvalho G; Duque AF; Reis MA
    N Biotechnol; 2017 Jul; 37(Pt A):108-116. PubMed ID: 27422276
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Emergent Approaches to Efficient and Sustainable Polyhydroxyalkanoate Production.
    Bedade DK; Edson CB; Gross RA
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34200447
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers.
    Koutinas AA; Vlysidis A; Pleissner D; Kopsahelis N; Lopez Garcia I; Kookos IK; Papanikolaou S; Kwan TH; Lin CS
    Chem Soc Rev; 2014 Apr; 43(8):2587-627. PubMed ID: 24424298
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Advances in synthesis of polyhydroxyalkanoates by using residual activated sludge].
    Meng D; Li R; Liu Y; Fan X; Huang Z; Gu P; Li Q
    Sheng Wu Gong Cheng Xue Bao; 2019 Nov; 35(11):2165-2176. PubMed ID: 31814362
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combined polyhydroxyalkanoates (PHA) and 1,3-propanediol production from crude glycerol: Selective conversion of volatile fatty acids into PHA by mixed microbial consortia.
    Burniol-Figols A; Varrone C; Le SB; Daugaard AE; Skiadas IV; Gavala HN
    Water Res; 2018 Jun; 136():180-191. PubMed ID: 29505919
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polyhydroxyalkanoate (PHA) storage within a mixed-culture biomass with simultaneous growth as a function of accumulation substrate nitrogen and phosphorus levels.
    Valentino F; Karabegovic L; Majone M; Morgan-Sagastume F; Werker A
    Water Res; 2015 Jun; 77():49-63. PubMed ID: 25846983
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microbial consortia including methanotrophs: some benefits of living together.
    Singh R; Ryu J; Kim SW
    J Microbiol; 2019 Nov; 57(11):939-952. PubMed ID: 31659683
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integration of biopolymer production with process water treatment at a sugar factory.
    Anterrieu S; Quadri L; Geurkink B; Dinkla I; Bengtsson S; Arcos-Hernandez M; Alexandersson T; Morgan-Sagastume F; Karlsson A; Hjort M; Karabegovic L; Magnusson P; Johansson P; Christensson M; Werker A
    N Biotechnol; 2014 Jun; 31(4):308-23. PubMed ID: 24361532
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.