BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 28952574)

  • 1. Stable Gene Regulatory Network Modeling From Steady-State Data.
    Larvie JE; Sefidmazgi MG; Homaifar A; Harrison SH; Karimoddini A; Guiseppi-Elie A
    Bioengineering (Basel); 2016 Apr; 3(2):. PubMed ID: 28952574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A group LASSO-based method for robustly inferring gene regulatory networks from multiple time-course datasets.
    Liu LZ; Wu FX; Zhang WJ
    BMC Syst Biol; 2014; 8 Suppl 3(Suppl 3):S1. PubMed ID: 25350697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of building gene regulatory networks with sparse autoregressive models.
    Rajapakse JC; Mundra PA
    BMC Bioinformatics; 2011; 12 Suppl 13(Suppl 13):S17. PubMed ID: 22373004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic network identification using convex programming.
    Julius A; Zavlanos M; Boyd S; Pappas GJ
    IET Syst Biol; 2009 May; 3(3):155-66. PubMed ID: 19449976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stochastic S-system modeling of gene regulatory network.
    Chowdhury AR; Chetty M; Evans R
    Cogn Neurodyn; 2015 Oct; 9(5):535-47. PubMed ID: 26379803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring gene regulatory networks by integrating ChIP-seq/chip and transcriptome data via LASSO-type regularization methods.
    Qin J; Hu Y; Xu F; Yalamanchili HK; Wang J
    Methods; 2014 Jun; 67(3):294-303. PubMed ID: 24650566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring gene expression networks with hubs using a degree weighted Lasso approach.
    Sulaimanov N; Kumar S; Burdet F; Ibberson M; Pagni M; Koeppl H
    Bioinformatics; 2019 Mar; 35(6):987-994. PubMed ID: 30165436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reverse engineering highlights potential principles of large gene regulatory network design and learning.
    Carré C; Mas A; Krouk G
    NPJ Syst Biol Appl; 2017; 3():17. PubMed ID: 28649444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring gene networks from steady-state response to single-gene perturbations.
    Brazhnik P
    J Theor Biol; 2005 Dec; 237(4):427-40. PubMed ID: 15975609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors.
    Ă–sterlund T; Bordel S; Nielsen J
    Integr Biol (Camb); 2015 May; 7(5):560-8. PubMed ID: 25855217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An approach for reduction of false predictions in reverse engineering of gene regulatory networks.
    Khan A; Saha G; Pal RK
    J Theor Biol; 2018 May; 445():9-30. PubMed ID: 29462626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minimum network constraint on reverse engineering to develop biological regulatory networks.
    Shao B; Wu J; Tian B; Ouyang Q
    J Theor Biol; 2015 Sep; 380():9-15. PubMed ID: 25981630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reverse engineering gene regulatory networks: coupling an optimization algorithm with a parameter identification technique.
    Hsiao YT; Lee WP
    BMC Bioinformatics; 2014; 15 Suppl 15(Suppl 15):S8. PubMed ID: 25474560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene networks reconstruction and time-series prediction from microarray data using recurrent neural fuzzy networks.
    Maraziotis IA; Dragomir A; Bezerianos A
    IET Syst Biol; 2007 Jan; 1(1):41-50. PubMed ID: 17370428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures.
    Kentzoglanakis K; Poole M
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):358-71. PubMed ID: 21576756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying time-delayed gene regulatory networks via an evolvable hierarchical recurrent neural network.
    Kordmahalleh MM; Sefidmazgi MG; Harrison SH; Homaifar A
    BioData Min; 2017; 10():29. PubMed ID: 28785315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying Dynamical Time Series Model Parameters from Equilibrium Samples, with Application to Gene Regulatory Networks.
    Young WC; Yeung KY; Raftery AE
    Stat Modelling; 2019 Aug; 19(4):444-465. PubMed ID: 33824624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring gene regulatory networks by integrating static and dynamic data.
    Ferrazzi F; Magni P; Sacchi L; Nuzzo A; Petrovic U; Bellazzi R
    Int J Med Inform; 2007 Dec; 76 Suppl 3():S462-75. PubMed ID: 17825607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recurrent neural network-based modeling of gene regulatory network using elephant swarm water search algorithm.
    Mandal S; Saha G; Pal RK
    J Bioinform Comput Biol; 2017 Aug; 15(4):1750016. PubMed ID: 28659000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.