These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28952574)

  • 41. Information Transfer in Linear Multivariate Processes Assessed through Penalized Regression Techniques: Validation and Application to Physiological Networks.
    Antonacci Y; Astolfi L; Nollo G; Faes L
    Entropy (Basel); 2020 Jul; 22(7):. PubMed ID: 33286504
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Expectation propagation for large scale Bayesian inference of non-linear molecular networks from perturbation data.
    Narimani Z; Beigy H; Ahmad A; Masoudi-Nejad A; Fröhlich H
    PLoS One; 2017; 12(2):e0171240. PubMed ID: 28166542
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gene perturbation and intervention in probabilistic Boolean networks.
    Shmulevich I; Dougherty ER; Zhang W
    Bioinformatics; 2002 Oct; 18(10):1319-31. PubMed ID: 12376376
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A gene network simulator to assess reverse engineering algorithms.
    Di Camillo B; Toffolo G; Cobelli C
    Ann N Y Acad Sci; 2009 Mar; 1158():125-42. PubMed ID: 19348638
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Uncovering gene regulatory networks from time-series microarray data with variational Bayesian structural expectation maximization.
    Luna IT; Huang Y; Yin Y; Padillo DP; Perez MC
    EURASIP J Bioinform Syst Biol; 2007; 2007(1):71312. PubMed ID: 18309364
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reverse-engineering of gene networks for regulating early blood development from single-cell measurements.
    Wei J; Hu X; Zou X; Tian T
    BMC Med Genomics; 2017 Dec; 10(Suppl 5):72. PubMed ID: 29297370
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Estimating coarse gene network structure from large-scale gene perturbation data.
    Wagner A
    Genome Res; 2002 Feb; 12(2):309-15. PubMed ID: 11827950
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Parameter Estimation for Gene Regulatory Networks from Microarray Data: Cold Shock Response in Saccharomyces cerevisiae.
    Dahlquist KD; Fitzpatrick BG; Camacho ET; Entzminger SD; Wanner NC
    Bull Math Biol; 2015 Aug; 77(8):1457-92. PubMed ID: 26420504
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Large-Scale Recurrent Neural Network Based Modelling of Gene Regulatory Network Using Cuckoo Search-Flower Pollination Algorithm.
    Mandal S; Khan A; Saha G; Pal RK
    Adv Bioinformatics; 2016; 2016():5283937. PubMed ID: 26989410
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inferring gene expression networks via static and dynamic data integration.
    Ferrazzi F; Magni P; Sacchi L; Bellazzi R
    Stud Health Technol Inform; 2006; 124():119-24. PubMed ID: 17108514
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantitative inference of dynamic regulatory pathways via microarray data.
    Chang WC; Li CW; Chen BS
    BMC Bioinformatics; 2005 Mar; 6():44. PubMed ID: 15748298
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reconstructing Genetic Regulatory Networks Using Two-Step Algorithms with the Differential Equation Models of Neural Networks.
    Chen CK
    Interdiscip Sci; 2018 Dec; 10(4):823-835. PubMed ID: 28748400
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tracking of time-varying genomic regulatory networks with a LASSO-Kalman smoother.
    Khan J; Bouaynaya N; Fathallah-Shaykh HM
    EURASIP J Bioinform Syst Biol; 2014 Feb; 2014(1):3. PubMed ID: 24517200
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inferring gene regulatory networks via nonlinear state-space models and exploiting sparsity.
    Noor A; Serpedin E; Nounou M; Nounou HN
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1203-11. PubMed ID: 22350207
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Consensus and Meta-analysis regulatory networks for combining multiple microarray gene expression datasets.
    Steele E; Tucker A
    J Biomed Inform; 2008 Dec; 41(6):914-26. PubMed ID: 18337190
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reverse engineering genetic networks using evolutionary computation.
    Noman N; Iba H
    Genome Inform; 2005; 16(2):205-14. PubMed ID: 16901103
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inference of large-scale gene regulatory networks using regression-based network approach.
    Kim H; Lee JK; Park T
    J Bioinform Comput Biol; 2009 Aug; 7(4):717-35. PubMed ID: 19634200
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A new approach to dynamic fuzzy modeling of genetic regulatory networks.
    Sun Y; Feng G; Cao J
    IEEE Trans Nanobioscience; 2010 Dec; 9(4):263-72. PubMed ID: 21041161
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sparse brain network recovery under compressed sensing.
    Lee H; Lee DS; Kang H; Kim BN; Chung MK
    IEEE Trans Med Imaging; 2011 May; 30(5):1154-65. PubMed ID: 21478072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.