These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 28952582)

  • 1. Evaluating Major Electrode Types for Idle Biological Signal Measurements for Modern Medical Technology.
    Albulbul A
    Bioengineering (Basel); 2016 Aug; 3(3):. PubMed ID: 28952582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of different types of dry electrodes for wearable smart monitoring devices.
    Popović-Maneski L; Ivanović MD; Atanasoski V; Miletić M; Zdolšek S; Bojović B; Hadžievski L
    Biomed Tech (Berl); 2020 Aug; 65(4):405-415. PubMed ID: 32238599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low Impedance Carbon Adhesive Electrodes with Long Shelf Life.
    Posada-Quintero HF; Reyes BA; Burnham K; Pennace J; Chon KH
    Ann Biomed Eng; 2015 Oct; 43(10):2374-82. PubMed ID: 25691400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stretchable Sponge Electrodes for Long-Term and Motion-Artifact-Tolerant Recording of High-Quality Electrophysiologic Signals.
    Lo LW; Zhao J; Aono K; Li W; Wen Z; Pizzella S; Wang Y; Chakrabartty S; Wang C
    ACS Nano; 2022 Aug; 16(8):11792-11801. PubMed ID: 35861486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanofiber web textile dry electrodes for long-term biopotential recording.
    Oh TI; Yoon S; Kim TE; Wi H; Kim KJ; Woo EJ; Sadleir RJ
    IEEE Trans Biomed Circuits Syst; 2013 Apr; 7(2):204-11. PubMed ID: 23853303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance assessment of dry electrodes for wearable long term cardiac rhythm monitoring: Skin-electrode impedance spectroscopy.
    Bosnjak A; Kennedy A; Linares P; Borges M; McLaughlin J; Escalona OJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1861-1864. PubMed ID: 29060253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependence of Skin-Electrode Contact Impedance on Material and Skin Hydration.
    Goyal K; Borkholder DA; Day SW
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wireless CardioS framework for continuous ECG acquisition.
    Sriraam N; Srinivasulu A; Prakash VS
    J Med Eng Technol; 2023; 47(4):201-216. PubMed ID: 37910047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reappraisal of the effect of electrode property on recording slow potentials.
    Ikeda A; Nagamine T; Yarita M; Terada K; Kimura J; Shibasaki H
    Electroencephalogr Clin Neurophysiol; 1998 Jul; 107(1):59-63. PubMed ID: 9743273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dry Electrodes for Surface Electromyography Based on Architectured Titanium Thin Films.
    S Rodrigues M; Fiedler P; Küchler N; P Domingues R; Lopes C; Borges J; Haueisen J; Vaz F
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32380683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene-Enabled Electrodes for Electrocardiogram Monitoring.
    Celik N; Manivannan N; Strudwick A; Balachandran W
    Nanomaterials (Basel); 2016 Aug; 6(9):. PubMed ID: 28335284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance evaluation of five types of Ag/AgCl bio-electrodes for cerebral electrical impedance tomography.
    Xu S; Dai M; Xu C; Chen C; Tang M; Shi X; Dong X
    Ann Biomed Eng; 2011 Jul; 39(7):2059-67. PubMed ID: 21455793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ECG signal quality in intermittent long-term dry electrode recordings with controlled motion artifacts.
    Joutsen A; Cömert A; Kaappa E; Vanhatalo K; Riistama J; Vehkaoja A; Eskola H
    Sci Rep; 2024 Apr; 14(1):8882. PubMed ID: 38632263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a Low-cost and Low-noise Active Dry Electrode for Long-term Biopotential Recording.
    Pourahmad A; Mahnam A
    J Med Signals Sens; 2016; 6(4):197-202. PubMed ID: 28028495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ag-AgCl electrode noise in high-resolution ECG measurements.
    Fernández M; Pallás-Areny R
    Biomed Instrum Technol; 2000; 34(2):125-30. PubMed ID: 10820641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of Micro-Needle Electrodes for Bio-Signal Recording by a Magnetization-Induced Self-Assembly Method.
    Chen K; Ren L; Chen Z; Pan C; Zhou W; Jiang L
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27657072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation into the origin of the noise of surface electrodes.
    Huigen E; Peper A; Grimbergen CA
    Med Biol Eng Comput; 2002 May; 40(3):332-8. PubMed ID: 12195981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benchtop Performance of Novel Mixed Ionic-Electronic Conductive Electrode Form Factors for Biopotential Recordings.
    Colachis M; Schlink BR; Colachis S; Shqau K; Huegen BL; Palmer K; Heintz A
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793990
    [No Abstract]   [Full Text] [Related]  

  • 19. Non-contact electrocardiogram measuring method based on capacitance coupling electrodes with ultra-high input impedance.
    Li J; Wang Y; Li C; Xu Z; Zhao Z; Raza SA; Wang Y
    Rev Sci Instrum; 2022 Mar; 93(3):034101. PubMed ID: 35365001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Non-Newtonian liquid metal enabled enhanced electrography.
    Timosina V; Cole T; Lu H; Shu J; Zhou X; Zhang C; Guo J; Kavehei O; Tang SY
    Biosens Bioelectron; 2023 Sep; 235():115414. PubMed ID: 37236012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.