BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28952715)

  • 1. Local Backbone Flexibility as a Determinant of the Apparent pK
    Peck MT; Ortega G; De Luca-Johnson JN; Schlessman JL; Robinson AC; García-Moreno E B
    Biochemistry; 2017 Oct; 56(40):5338-5346. PubMed ID: 28952715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charges in Hydrophobic Environments: A Strategy for Identifying Alternative States in Proteins.
    Robinson AC; Majumdar A; Schlessman JL; García-Moreno E B
    Biochemistry; 2017 Jan; 56(1):212-218. PubMed ID: 28009501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational Reorganization Coupled to the Ionization of Internal Lys Residues in Proteins.
    Richman DE; Majumdar A; García-Moreno E B
    Biochemistry; 2015 Sep; 54(38):5888-97. PubMed ID: 26335188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomalous Properties of Lys Residues Buried in the Hydrophobic Interior of a Protein Revealed with
    Kougentakis CM; Grasso EM; Robinson AC; Caro JA; Schlessman JL; Majumdar A; García-Moreno E B
    J Phys Chem Lett; 2018 Jan; 9(2):383-387. PubMed ID: 29266956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-Dependent Conformational Changes Due to Ionizable Residues in a Hydrophobic Protein Interior: The Study of L25K and L125K Variants of SNase.
    Sarkar A; Gupta PL; Roitberg AE
    J Phys Chem B; 2019 Jul; 123(27):5742-5754. PubMed ID: 31260304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A buried lysine that titrates with a normal pKa: role of conformational flexibility at the protein-water interface as a determinant of pKa values.
    Harms MJ; Schlessman JL; Chimenti MS; Sue GR; Damjanović A; García-Moreno B
    Protein Sci; 2008 May; 17(5):833-45. PubMed ID: 18369193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-Dependent Conformational Changes Lead to a Highly Shifted p
    Sarkar A; Roitberg AE
    J Phys Chem B; 2020 Dec; 124(49):11072-11080. PubMed ID: 33259714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and thermodynamic consequences of burial of an artificial ion pair in the hydrophobic interior of a protein.
    Robinson AC; Castañeda CA; Schlessman JL; García-Moreno EB
    Proc Natl Acad Sci U S A; 2014 Aug; 111(32):11685-90. PubMed ID: 25074910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental pK(a) values of buried residues: analysis with continuum methods and role of water penetration.
    Fitch CA; Karp DA; Lee KK; Stites WE; Lattman EE; García-Moreno E B
    Biophys J; 2002 Jun; 82(6):3289-304. PubMed ID: 12023252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Coupled Ionization-Conformational Equilibrium Is Required To Understand the Properties of Ionizable Residues in the Hydrophobic Interior of Staphylococcal Nuclease.
    Liu J; Swails J; Zhang JZH; He X; Roitberg AE
    J Am Chem Soc; 2018 Feb; 140(5):1639-1648. PubMed ID: 29308643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large shifts in pKa values of lysine residues buried inside a protein.
    Isom DG; Castañeda CA; Cannon BR; García-Moreno B
    Proc Natl Acad Sci U S A; 2011 Mar; 108(13):5260-5. PubMed ID: 21389271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational consequences of ionization of Lys, Asp, and Glu buried at position 66 in staphylococcal nuclease.
    Karp DA; Stahley MR; García-Moreno B
    Biochemistry; 2010 May; 49(19):4138-46. PubMed ID: 20329780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural origins of high apparent dielectric constants experienced by ionizable groups in the hydrophobic core of a protein.
    Chimenti MS; Castañeda CA; Majumdar A; García-Moreno E B
    J Mol Biol; 2011 Jan; 405(2):361-77. PubMed ID: 21059359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray and thermodynamic studies of staphylococcal nuclease variants I92E and I92K: insights into polarity of the protein interior.
    Nguyen DM; Leila Reynald R; Gittis AG; Lattman EE
    J Mol Biol; 2004 Aug; 341(2):565-74. PubMed ID: 15276844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncovering pH-dependent transient states of proteins with buried ionizable residues.
    Goh GB; Laricheva EN; Brooks CL
    J Am Chem Soc; 2014 Jun; 136(24):8496-9. PubMed ID: 24842060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational relaxation and water penetration coupled to ionization of internal groups in proteins.
    Damjanović A; Brooks BR; García-Moreno B
    J Phys Chem A; 2011 Apr; 115(16):4042-53. PubMed ID: 21428436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arginine residues at internal positions in a protein are always charged.
    Harms MJ; Schlessman JL; Sue GR; García-Moreno B
    Proc Natl Acad Sci U S A; 2011 Nov; 108(47):18954-9. PubMed ID: 22080604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charges in the hydrophobic interior of proteins.
    Isom DG; Castañeda CA; Cannon BR; Velu PD; García-Moreno E B
    Proc Natl Acad Sci U S A; 2010 Sep; 107(37):16096-100. PubMed ID: 20798341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular determinants of the pKa values of Asp and Glu residues in staphylococcal nuclease.
    Castañeda CA; Fitch CA; Majumdar A; Khangulov V; Schlessman JL; García-Moreno BE
    Proteins; 2009 Nov; 77(3):570-88. PubMed ID: 19533744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural reorganization triggered by charging of Lys residues in the hydrophobic interior of a protein.
    Chimenti MS; Khangulov VS; Robinson AC; Heroux A; Majumdar A; Schlessman JL; García-Moreno B
    Structure; 2012 Jun; 20(6):1071-85. PubMed ID: 22632835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.